
Domain Invariant Representation Learning with
Domain Density Transformations

A. Tuan Nguyen
University of Oxford; VinAI Research

Oxford, United Kingdom
tuan@robots.ox.ac.uk

Toan Tran
VinAI Research
Hanoi, Vietnam

v.toantm3@vinai.io

Yarin Gal
University of Oxford

Oxford, United Kingdom
yarin@cs.ox.ac.uk

Atilim Gunes Baydin
University of Oxford

Oxford, United Kingdom
gunes@robots.ox.ac.uk

Abstract

Domain generalization refers to the problem where we aim to train a model on
data from a set of source domains so that the model can generalize to unseen target
domains. Naively training a model on the aggregate set of data (pooled from all
source domains) has been shown to perform suboptimally, since the information
learned by that model might be domain-specific and generalize imperfectly to target
domains. To tackle this problem, a predominant domain generalization approach
is to learn some domain-invariant information for the prediction task, aiming at
a good generalization across domains. In this paper, we propose a theoretically
grounded method to learn a domain-invariant representation by enforcing the
representation network to be invariant under all transformation functions among
domains. We next introduce the use of generative adversarial networks to learn such
domain transformations in a possible implementation of our method in practice.
We demonstrate the effectiveness of our method on several widely used datasets for
the domain generalization problem, on all of which we achieve competitive results
with state-of-the-art models.

1 Introduction

Domain generalization refers to the machine learning scenario where the model is trained on multiple
source domains so that it is expected to generalize well to unseen target domains. The key difference
between domain generalization [25, 37, 18] and domain adaptation [49, 48, 14, 45] is that, in domain
generalization, the learner does not have access to data of the target domain, making the problem much
more challenging. One of the most common domain generalization approaches is to learn an invariant
representation across domains, aiming at a good generalization performance on target domains. For
instance, in the representation learning framework, the prediction function y = f(x), where x is
data and y is a label, is obtained as a composition y = h ◦ g(x) of a deep representation network
z = g(x), where z is a learned representation of data x, and a smaller classifier y = h(z), predicting
label y given representation z, both of which are shared across domains. With this framework, we
can aim to learn an “invariant” representation z across the source domains with the “hope” of a better
generalization to the target domain.

Most existing “domain-invariance”-based methods in domain generalization focus on the marginal
distribution alignment [37, 1, 44, 43, 32], which are still prone to distributional shifts when the
conditional data distribution is not stable. In particular, the marginal alignment refers to making the

35th Conference on Neural Information Processing Systems (NeurIPS 2021), Sydney, Australia.

𝑝(𝑥)

𝑝(𝑧)

𝑝(𝑥)

𝑝(𝑧)

Domain 1: 𝑧 = 𝑥/ 𝑥 (with color indicating y Domain 2: 𝑧 = 𝑥/ 𝑥 (with color indicating y

Figure 1: An example of two domains. For each domain, x is uniformly distributed on the outer circle (radius
2 for domain 1 and radius 3 for domain 2), with the color indicating class label y. After the transformation
z = x/||x||2, the marginal of z is aligned (uniformly distributed on the unit circle for both domains), but the
conditional p(y|z) is not aligned. Thus, using this representation for predicting y would not generalize well
across domains.

representation distribution p(z) to be the same across domains. This is essential since if p(z) for
the target domain is different from that of source domains, the classification network h(z) would
face out-of-distribution data at test time. Conditional alignment refers to aligning the conditional
distribution of the label given the representation p(y|z) to expect that the classification network
(trained on the source domains) would give accurate predictions at test time. The formal definitions
of these two types of alignment are discussed in Section 3.

In Figure 1 we illustrate an example where the representation z satisfies the marginal alignment but
not the conditional alignment. Specifically, x is distributed uniformly on the circle with radius 2 (and
centered at the origin) for domain 1 and distributed uniformly on the circle with radius 3 (centered
at the origin) for domain 2. The representation z defined by the mapping z = g(x) = x/||x||2 will
align the marginal distribution p(z), i.e., z is now distributed uniformly on the unit circle for both
domains. However, the conditional distribution p(y|z) is not aligned between the two domains (y is
represented by color), which means using this representation for classification is suboptimal, and
in this extreme case would lead to 0% accuracy in the target domain 2. This is an extreme case of
misalignment but it does illustrate the importance of the conditional alignment. Therefore, we need
to align both the marginal and the conditional distributions for a domain-invariant representation.

Recently, there have been several attempts [33, 34, 50] to align the joint distribution of the repre-
sentation and the label p(y, z) in a domain generalization problem by aligning the distribution of z
across domains for each class, i.e., p(z|y) (given that the label distribution p(y) is unchanged across
domains). However, the key drawbacks of these methods are that they either do not scale well with the
number of classes or have limited performance in real-world computer vision datasets (see Section 5).

In this paper, we focus on learning a domain-invariant representation that aligns both the marginal
and the conditional distributions in domain generalization problems. We present theoretical results re-
garding the necessary and sufficient conditions for the existence of a domain-invariant representation;
and subsequently propose a method to learn such representations by enforcing the invariance of the
representation network under domain density transformation functions. A simple intuition for our
approach is that if we enforce the representation to be invariant under the transformations among the
source domains, the representation will become more robust under other domain transformations.

Furthermore, we introduce an implementation of our method in practice, in which the domain
transformation functions are learned through the training process of generative adversarial networks
(GANs) [20, 12]. We conduct extensive experiments on several widely used datasets and observe
a significant improvement over relevant baselines. We also compare our methods against other
state-of-the-art models and show that our method achieves competitive results.

Our contribution in this work is threefold:

• We revisit the domain invariant representation learning problem and shed some light by
providing several observations: a necessary and sufficient condition for the existence of a

2

domain-invariant representation and a connection between domain-independent representa-
tion and a marginally-aligned representation.

• We propose a theoretically grounded method for learning a domain-invariant representation
based on domain density transformation functions. We also demonstrate that we can learn
the domain transformation functions by GANs in order to implement our approach in
practice.

• We empirically show the effectiveness of our method by performing experiments on widely
used domain generalization datasets (e.g., Rotated MNIST, VLCS and PACS) and compare
our method with relevant baselines (especially CIDG [33], CIDDG [34] and DGER [50]).

2 Related Work

Domain generalization: Domain generalization is an seminal task in real-world machine learning
problems where the data distribution of a target domain might vary from that of the training source
domains. Therefore, extensive research has been developed to handle that domain-shift problem,
aiming at a better generalization performance in the unseen target domain. A predominant approach
for domain generalization is domain invariance [37, 33, 34, 3, 47, 2, 24, 50, 1, 32, 44, 43] that
learns a domain-invariant representation (which we define as to align the marginal distribution of
the representation or the conditional distribution of the output given the representation or both).
We are particularly interested in CIDG [33], CIDDG [34] and DGER [50], which also learn a
representation that aligns the joint distribution of the representation and the label given that the class
distribution is unchanged across domains. It should be noted that Zhao et al. [50] assume the label
is distributed uniformly on all domains, while our proposed method only requires an assumption
that the distribution of label is unchanged across domains (and not necessarily uniform). We also
show later in our paper that the invariance of the distribution of class label across domains turns out
to be the necessary and sufficient condition for the existence of a domain-invariant representation.
Moreover, we provide a unified theoretical discussion about the two types of alignment, and then
propose a method to learn a representation that aligns both the marginal and conditional distributions
via domain density transformation functions for the domain generalization problem. Note that there
exist several related works, such as Ajakan et al. [1], Ganin et al. [17], that use adversarial loss with a
domain discriminator to align the marginal distribution of representation among domains, but they
are different from our approach. In particular, our method only uses GANs or normalizing flows
to learn the transformation among domains, and learn a representation that is invariant under these
functions, without using an adversarial loss on the representation (which can lead to very unstable
training [19, 27]). There also exist works [35, 23, 7, 40] in the domain adaptation literature that use
generative modeling to learn a domain transformation function from source to target images, and
use the transformed images to train a classifier. Our method differs from these by enforcing the
representation to be invariant under the domain transformation, and we show theoretically that the
representation learned that way would be domain-invariant marginally and conditionally. Meanwhile,
the above works use the domain transformation to transform the images and train the classifier directly
on the transformed data, and are not effective or applicable for domain generalization.

Another line of methods that received a recent surge in interest is applying the idea of meta-learning
for domain generalization problems [16, 4, 31, 5]. The core idea behind these works is that if we train
a model that can adapt among the source domains well, it would be more likely to adapt to unseen
target domains. Recently, there are approaches [15, 9, 41] that make use of the domain specificity,
together with domain invariance, for the prediction problem. The argument here is that domain
invariance, while being generalized well between domains, might be insufficient for the prediction of
each specific domain and thus domain specificity is necessary. We would like to emphasize that our
method is not a direct competitor of meta-learning based and domain-specificity based methods. In
fact, we expect that our method can be used in conjunction with these methods to get the best of both
worlds for better performance.

Density transformation between domains: Since our method is based on domain density trans-
formations, we will review briefly some related works here. To transform the data density between
domains, one can use several types of generative models. Two common methods are based on
GANs [51, 12, 13] and normalizing flows [21]. Although our method is not limited to the choice of
the generative model used for learning the domain transformation functions, we opt to use GAN,

3

	𝑑 	𝑦

	𝑥 	𝑧

Figure 2: Graphical model. The data distribution is p(x, y|d) for each domain d. Our goal is to learn a
representation z with a mapping p(z|x) from x so that z can be generalized across domains for the prediction
task.

specifically StarGAN [12], for scalability. This is just an implementation choice to demonstrate the
use and effectiveness of our method in practice, and it is unrelated to our theoretical results.

Connection to contrastive learning: Our method can be interpreted intuitively as a way to learn
a representation network that is invariant (robust) under domain transformation functions. On the
other hand, contrastive learning [10, 11, 36] is also a representation learning paradigm where the
model learns images’ similarity. In particular, contrastive learning encourages the representation of
an input to be similar under different transformations (usually image augmentations). However, the
transformations in contrastive learning are not learned and do not serve the purpose of making the
representation robust under domain transformations. Our method first learns the transformations
between domains and then uses them to learn a representation that is invariant under domain shifts.

3 Theoretical Approach

3.1 Problem Statement

Let us denote the data distribution for a domain d ∈ D by p(x, y|d), where the variable x ∈ X
represents the data and y ∈ Y is its corresponding label. The graphical model for our domain
generalization framework is depicted in Figure 2, in which the joint distribution is presented as
follows:

p(d, x, y, z) = p(d)p(y)p(x|y, d)p(z|x) . (1)

In the domain generalization problem, since the data distribution p(x, y|d) varies between domains,
we expect the changes in the marginal data distribution p(x|d) or the conditional data distribution
p(y|x, d) or both. In this paper, we assume that p(y|d) is invariant across domains, i.e., the marginal
distribution of the label y is not dependent on the domain d—this assumption is shown to be the key
condition for the existence of a domain-invariant representation (see Remark 1). This is practically
reasonable since in many classification datasets, the class distribution can be assumed to be unchanged
across domains (usually uniform distribution among the classes, e.g., balanced datasets).

Our aim is to find a domain-invariant representation z represented by the mapping p(z|x) that can be
used for the classification of label y and be generalized among domains. In practice, this mapping
can be deterministic (in that case, p(z|x) = δgθ(x)(z) with some function gθ, where δ is the Dirac
delta distribution) or probabilistic (e.g., a normal distribution with the mean and standard deviation
outputted by a network parameterized by θ). For all of our experiments, we use a deterministic
mapping for an efficient inference at test time, while in this section, we present our theoretical results
with the general case of a distribution p(z|x).
In most existing domain generalization approaches, the domain-invariant representation z is defined
using one of the two following definitions:
Definition 1. (Marginal Distribution Alignment) The representation z is said to satisfy the marginal
distribution alignment condition if p(z|d) is invariant w.r.t. d.
Definition 2. (Conditional Distribution Alignment) The representation z is said to satisfy the
conditional distribution alignment condition if p(y|z, d) is invariant w.r.t. d.

However, when the joint data distribution varies between domains, it is crucial to align both the
marginal and the conditional distribution of the representation z. To this end, this paper aims to

4

𝑓",$ transforms data density from domain 1 to 2

(with the inverse 𝑓$,")

𝑥$ = 𝑓",$(𝑥")
		𝑥" 		𝑥$

	𝑧

𝑔, (𝑥
")

𝑔,(
𝑥 $)

Domain 1 Domain 2

Figure 3: Domain density transformation. If we know the function f1,2 that transforms the data density from
domain 1 to domain 2, we can learn a domain invariant representation network gθ(x) by enforcing it to be
invariant under f1,2, i.e., gθ(x1) = gθ(x2) for any x2 = f1,2(x1) .

learn a representation z that satisfies both the marginal and conditional alignment conditions. We
justify our assumption of independence between y and d (thus p(y|d) = p(y)) by the following
remark, which shows that this assumption turns out to be the necessary and sufficient condition for
learning a domain-invariant representation. Note that this condition is also used in several existing
works [50, 33, 34].

Remark 1. The invariance of p(y|d) across domains d is the necessary and sufficient condition for
the existence of a domain-invariant representation (that aligns both the marginal and conditional
distributions).

Proof. provided in the appendix.

It is also worth noting that methods which learn a domain independent representation, for example,
[24], only align the marginal distribution. This comes directly from the following remark:

Remark 2. A representation z satisfies the marginal distribution alignment condition if and only if
I(z, d) = 0, where I(z, d) is the mutual information between z and d.

Proof. provided in the appendix.

The question still remains that how we can learn a non-trivial domain invariant representation that
satisfies both of the distribution alignment conditions. This will be discussed in the following
subsection.

3.2 Learning a Domain-Invariant Representation with Domain Density Transformation
Functions

To present our method, we will make some assumptions about the data distribution. Specifically, for
any two domains d, d′, we assume that there exists an invertible and differentiable function denoted
by fd,d′ that transforms the density p(x|y, d) to p(x′|y, d′),∀y. Let fd,d′ be the inverse of fd′,d, i.e.,
fd′,d := (fd,d′)

−1.

Due to the invertibility and differentiability of f ’s, we can apply the change of variables theorem
[39, 6] for the distributions above. In particular, with x′ = fd,d′(x) (and thus x = fd′,d(x

′)), we
have:

p(x|y, d) = p(x′|y, d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 , (2)

where Jfd′,d(x
′) is the Jacobian matrix of the function fd′,d evaluated at x′.

Multiplying both sides of Eq. 2 with p(y|d) = p(y|d′), we get

p(x, y|d) = p(x′, y|d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 ; (3)

5

and marginalizing both sides of the above equation over y gives us

p(x|d) = p(x′|d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 . (4)

By using Eq. 2 and Eq. 4, we can prove the following theorem, which offers an efficient way to learn
a domain-invariant representation, given the transformation functions f ’s between domains.
Theorem 1. Given an invertible and differentiable function fd,d′ (with the inverse fd′,d) that trans-
forms the data density from domain d to d′ (as described above). Assuming that the representation z
satisfies:

p(z|x) = p(z|fd,d′(x)), ∀x, (5)

Then it aligns both the marginal and the conditional of the data distribution for domain d and d′.

Proof. provided in the appendix.

This theorem indicates that, if we can find the functions f that transform the data densities among the
domains, we can learn a domain-invariant representation z by encouraging the representation to be
invariant under all the transformations f . This idea is illustrated in Figure 3. We therefore can use the
following learning objective to learn a domain-invariant representation z = gθ(x):

Ed
[
Ep(x,y|d) [l(y, gθ(x)) + Ed′ [dis(gθ(x), gθ(fd,d′(x)))]]

]
(6)

Assume that we have a set of K sources domain Ds = {d1, d2, ..., dK}, the objective function in
Eq. 6 becomes:

Ed,d′∈Ds,p(x,y|d) [l(y, gθ(x)) + dis(gθ(x), gθ(fd,d′(x)))] , (7)

where l(y, gθ(x)) is the prediction loss of a network that predicts y given z = gθ(x), and dis is a
distance metric to enforce the invariant condition in Eq. 5. In our implementation, we use a squared
error distance, e.g., dis(gθ(x), gθ(fd,d′(x))) = ||gθ(x)− gθ(fd,d′(x))||22, since it performs the best
in practice. However, we also considered other distances such as constrastive distance, which we
discuss in more detail in the appendix.

This theorem motivates us to learn such domain transformation functions for our domain-invariant
representation learning framework. In the next section, we show how one can incorporate this idea
into real-world domain generalization problems by learning the transformations with generative
adversarial networks.

4 An Practical Implementation using Generative Adversarial Networks

In practice, we can learn the functions f that transform the data distributions between domains by
using several generative modeling frameworks, e.g., normalizing flows [21] or GANs [51, 12, 13].
One advantage of normalizing flows is that this transformation is naturally invertible by design of the
neural network. However, existing frameworks (e.g., Grover et al. [21]) require two flows to transform
between each pair of domains, making it not scalable (scales linearly with the number of domains).
Moreover, an initial implementation of our method using AlignFlow shows similar performance
with the version using GAN. Therefore, we opt to use GANs for better scalability. In particular,
we use the StarGAN [12] model, which is a unified network (only requiring a single network to
transform across all domains) designed for image domain transformations. It should be noted that the
transformations learned by StarGAN are differentiable everywhere or almost everywhere with typical
choices of the activation function (e.g., tanh or ReLU), and the cycle-consistency loss enforces each
pair of transformations to approximate a pair of inverse functions.

The goal of StarGAN is to learn a unified network G that transforms the data density among multiple
domains. In particular, the network G(x, d, d′) (i.e., G is conditioned on the image x and the two
different domains d, d′) transforms an image x from domain d to domain d′. Different from the
original StarGAN model that only takes the image x and the desired destination domain d′ as its
input, in our implementation, we feed both the original domain d and desired destination domain d′
together with the original image x to the generator G.

6

The generator’s goal is to fool a discriminator D into thinking that the transformed image belongs to
the destination domain d′. In other words, the equilibrium state of StarGAN, in which G completely
fools D, is when G successfully transforms the data density of the original domain to that of the
destination domain. After training, we useG(., d, d′) as the function fd,d′(.) described in the previous
section and perform the representation learning via the objective function in Eq. 7.

Three important loss functions of the StarGAN architecture are:

• Domain classification loss Lcls that encourages the generator G to generate images that
closely belongs to the desired destination domain d′.

• The adversarial loss Ladv that is the classification loss of a discriminator D that tries to
distinguish between real images and the synthetic images generated by G. The equilibrium
state of StarGAN is when G completely fools D, which means the distribution of the
generated images (via G(x, d, d′), x ∼ p(x|d)) becomes the distribution of the real images
of the destination domain p(x′|d′). This is our objective, i.e., to learn a function that
transforms domains’ densities.

• Reconstruction loss Lrec = Ex,d,d′ [||x−G(x′, d′, d)||1] where x′ = G(x, d, d′) to ensure
that the transformations preserve the image’s content. Note that this also aligns with our
interest since we want G(., d′, d) to be the inverse of G(., d, d′), which minimizes Lrec.

We can enforce the generator G to transform the data distribution within the class y (e.g., p(x|y, d) to
p(x′|y, d′) ∀y) by sampling each minibatch with data from the same class y, so that the discriminator
will distinguish the transformed images with the real images from class y and domain d′. However,
we found that this constraint can be relaxed in practice, and the generator almost always transforms
the image within the original class y.

As mentioned earlier, after training the StarGAN model, we can use the generator G(., d, d′) as our
fd,d′(.) function and learn a domain-invariant representation via the learning objective in Eq. 7. We
name this implementation of our method DIRT-GAN (Domain Invariant Representation learning with
domain Transformations via Generative Adversarial Networks).

5 Experiments

5.1 Datasets

To evaluate our method, we perform experiments in three datasets that are commonly used in the
literature for domain generalization.

Rotated MNIST [18]: In this dataset, 1,000 MNIST images (100 per class) [29] are chosen to
form the first domain (denotedM0), then counter-clockwise rotations of 15◦, 30◦, 45◦, 60◦ and 75◦

are applied to create five additional domains, denotedM15,M30,M45,M60 andM75. The task is
classification with ten classes (digits 0 to 9).

VLCS [18]: contains 10,729 images from four domains, each domain is a subdataset. The four
datasets are VOC2007 (V), LabelMe (L), Caltech-101 (C), and SUN09 (S). The task is classification
with five classes.

PACS [30]: contains 9,991 images from four different domains: art painting, cartoon, photo, sketch.
The task is classification with seven classes.

5.2 Experimental Setting

For all datasets, we perform “leave-one-domain-out” experiments, where we choose one domain as
the target domain, train the model on all remaining domains and evaluate it on the chosen domain.
Following standard practice, we use 90% of available data as training data and 10% as validation
data, except for the Rotated MNIST experiment where we do not use a validation set and just report
the performance of the last epoch.

For the Rotated MNIST dataset, we use a network of two 3x3 convolutional layers and a fully
connected layer as the representation network gθ to get a representation z of 64 dimensions. A single

7

Table 1: Rotated Mnist. Reported numbers are mean accuracy and standard deviation among 5 runs

Domains

Model M0 M15 M30 M45 M60 M75 Average

HIR [47] 90.34 99.75 99.40 96.17 99.25 91.26 96.03
DIVA [24] 93.5 99.3 99.1 99.2 99.3 93.0 97.2
DGER [50] 90.09 99.24 99.27 99.31 99.45 90.81 96.36

DA [17] 86.7 98.0 97.8 97.4 96.9 89.1 94.3
LG [42] 89.7 97.8 98.0 97.1 96.6 92.1 95.3

HEX [46] 90.1 98.9 98.9 98.8 98.3 90.0 95.8
ADV [46] 89.9 98.6 98.8 98.7 98.6 90.4 95.2

DIRT-GAN (ours) 97.2(±0.3) 99.4(±0.1) 99.3(±0.1) 99.3(±0.1) 99.2(±0.1) 97.1(±0.3) 98.6

Figure 4: Visualization of the representation space. Each point indicates a representation z of an image x in
the two dimensional space and its color indicates the label y. Two left figures are for our method DIRT-GAN
and two right figures are for the naive model DeepAll.

linear layer is then used to map the representation z to the ten output classes. This architecture is the
deterministic version of the network used by Ilse et al. [24]. We train our network for 500 epochs with
the Adam optimizer [26], using the learning rate 0.001 and minibatch size 64, and report performance
on the test domain after the last epoch.

For the VLCS and PACS datasets, for a fair comparison against our main baselines, we use the most
common choices of backbone networks for those datasets in existing works as the representation
networks gθ, i.e., Alexnet [28] for VLCS and Resnet18 [22] for PACS. We replace the last fully
connected layer of the backbone with a linear layer of dimension 256 so that our representation has
256 dimensions. As with the Rotated MNIST experiment, we use a single layer to map from the
representation z to the output. We train the network for 100 epochs with plain stochastic gradient
descent (SGD) using learning rate 0.001, momentum 0.9, minibatch size 64, and weight decay 0.001.
Data augmentation is also standard practice for real-world computer vision datasets like VLCS and
PACS, and during the training we augment our data as follows: crops of random size and aspect ratio,
resizing to 224 × 224 pixels, random horizontal flips, random color jitter, randomly converting the
image tile to grayscale with 10% probability, and normalization using the ImageNet channel means
and standard deviations.

The StarGAN [12] model implementation is taken from the authors’ original source code with no
significant modifications. For each set of source domains, we train the StarGAN model for 100,000
iterations with a minibatch of 16 images per iteration.

Our code is available at https://github.com/atuannguyen/DIRT. We train our model on a NVIDIA
Quadro RTX 6000.

5.3 Results

Rotated MNIST Experiment. Table 1 shows the performance of our model on the Rotated MNIST
dataset. The main baselines we consider in this experiment are HIR [47], DIVA [24] and DGER [50],
which are domain invariance based methods. Our method recognizably outperforms those, illustrating

8

https://github.com/atuannguyen/DIRT

Table 2: VLCS. Reported numbers are mean accuracy and standard deviation among 5 runs

VLCS

Model Backbone V L C S Average

CIDG [33] Alexnet 65.65 60.43 91.12 60.85 69.51
CIDDG [34] Alexnet 64.38 63.06 88.83 62.10 69.59
DGER [50] Alexnet 73.24 58.26 96.92 69.10 74.38

HIR [47] Alexnet 69.10 62.22 95.39 65.71 73.10

JiGen [8] Alexnet 70.62 60.90 96.93 64.30 73.19

DIRT-GAN (ours) Alexnet 72.1(±1.0) 64.0(±0.9) 97.3(±0.2) 72.2(±1.1) 76.4

Table 3: PACS. Reported numbers are mean accuracy and standard deviation among 5 runs

PACS

Model Backbone Art Painting Cartoon Photo Sketch Average

DGER [50] Resnet18 80.70 76.40 96.65 71.77 81.38

JiGen [8] Resnet18 79.42 75.25 96.03 71.35 79.14
MLDG [31] Resnet18 79.50 77.30 94.30 71.50 80.70
MetaReg [4] Resnet18 83.70 77.20 95.50 70.40 81.70

CSD [38] Resnet18 78.90 75.80 94.10 76.70 81.40
DMG [9] Resnet18 76.90 80.38 93.35 75.21 81.46

DIRT-GAN (ours) Resnet18 82.56(± 0.4) 76.37(± 0.3) 95.65(± 0.5) 79.89(± 0.2) 83.62

the effectiveness of our method in learning a domain-invariant representation over the existing works.
We also include other best-performing models for this dataset in the second half of the table. To the
best of our knowledge, we set a new state-of-the-art performance on this Rotated MNIST dataset.

We further analyze the distribution of the representation z by performing principal component analysis
to reduce the dimension of z from 64 to two principal components. We visualize the representation
space for two domainsM30 andM60, with each point indicating the representation z of an image
x in the two-dimensional space and its color indicating the label y. Figures 4a and 4b show the
representation space of our method (in domainsM30 andM60 respectively). It is clear that both
the marginal (judged by the general distribution of the points) and the conditional (judged by the
positions of colors) are relatively aligned. Meanwhile, Figures 4c and 4d show the representation
space with naive training (in domainsM30 andM60 respectively), showing the misalignment in the
marginal distribution (judged by the general distribution of the points) and the conditional distribution
(for example, the distributions of blue points and green points).

VLCS and PACS. Tables 2 and 3 show the results for the VLCS and PACS datasets. In these
real-world computer vision datasets, we consider HIR [47], CIDG [33], CIDDG [34] and DGER [50]
as our main domain-invariance baselines. We also include other approaches (meta-learning based or
domain-specificity based) in the second half of the tables for references. Our method significantly
ourperforms other invariant-representataion baselines, namely CIDG, CIDDG and DGER, with the
same backbone architectures, showing the effectiveness of our representation alignment method.

6 Conclusion

To conclude, in this work we propose a theoretically grounded approach to learn a domain-invariant
representation for the domain generalization problem by using domain transformation functions.
We also provide insights into domain-invariant representation learning with several theoretical
observations. We then introduce an implementation for our method in practice with the domain trans-
formations learned by a StarGAN architecture and empirically show that our approach outperforms
other domain-invariance based methods. Our method also achieves competitive results on several
datasets when compared to other state-of-the-art models. A potential limitation of our method is that
we need to train an additional network (StarGAN) to learn to transform data density among domains.

9

However, this network is only used during training, and the required computation at test time is still
the same as other models. In the future, we plan to incorporate our method into meta-learning based
and domain-specificity based approaches for improved performance. We also plan to extend the
domain-invariant representation learning framework to the more challenging scenarios, for example,
where domain information is not available (i.e., we have a dataset pooled from multiple source
domains but do not know the domain identification of each data instance).

References
[1] H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, and M. Marchand. Domain-adversarial

neural networks. arXiv preprint arXiv:1412.4446, 2014.

[2] K. Akuzawa, Y. Iwasawa, and Y. Matsuo. Adversarial invariant feature learning with accuracy
constraint for domain generalization. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases, pages 315–331. Springer, 2019.

[3] M. Arjovsky, L. Bottou, I. Gulrajani, and D. Lopez-Paz. Invariant risk minimization. arXiv
preprint arXiv:1907.02893, 2019.

[4] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization
using meta-regularization. Advances in Neural Information Processing Systems, 31:998–1008,
2018.

[5] H. Behl, A. G. Baydin, and P. H. Torr. Alpha maml: Adaptive model-agnostic meta-learning. In
6th ICML Workshop on Automated Machine Learning, Thirty-sixth International Conference on
Machine Learning (ICML 2019), Long Beach, CA, US, 2019.

[6] V. I. Bogachev. Measure theory, volume 1. Springer Science & Business Media, 2007.

[7] K. Bousmalis, N. Silberman, D. Dohan, D. Erhan, and D. Krishnan. Unsupervised pixel-level
domain adaptation with generative adversarial networks. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3722–3731, 2017.

[8] F. M. Carlucci, A. D’Innocente, S. Bucci, B. Caputo, and T. Tommasi. Domain generalization
by solving jigsaw puzzles. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 2229–2238, 2019.

[9] P. Chattopadhyay, Y. Balaji, and J. Hoffman. Learning to balance specificity and invariance
for in and out of domain generalization. In European Conference on Computer Vision, pages
301–318. Springer, 2020.

[10] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton. A simple framework for contrastive learning
of visual representations. In International conference on machine learning, pages 1597–1607.
PMLR, 2020.

[11] T. Chen, S. Kornblith, K. Swersky, M. Norouzi, and G. Hinton. Big self-supervised models are
strong semi-supervised learners. arXiv preprint arXiv:2006.10029, 2020.

[12] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo. Stargan: Unified generative
adversarial networks for multi-domain image-to-image translation. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 8789–8797, 2018.

[13] Y. Choi, Y. Uh, J. Yoo, and J.-W. Ha. Stargan v2: Diverse image synthesis for multiple domains.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 8188–8197, 2020.

[14] R. T. d. Combes, H. Zhao, Y.-X. Wang, and G. Gordon. Domain adaptation with conditional
distribution matching and generalized label shift. arXiv preprint arXiv:2003.04475, 2020.

[15] Z. Ding and Y. Fu. Deep domain generalization with structured low-rank constraint. IEEE
Transactions on Image Processing, 27(1):304–313, 2017.

10

[16] Y. Du, J. Xu, H. Xiong, Q. Qiu, X. Zhen, C. G. Snoek, and L. Shao. Learning to learn with
variational information bottleneck for domain generalization. In European Conference on
Computer Vision, pages 200–216. Springer, 2020.

[17] Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand,
and V. Lempitsky. Domain-adversarial training of neural networks. The Journal of Machine
Learning Research, 17(1):2096–2030, 2016.

[18] M. Ghifary, W. B. Kleijn, M. Zhang, and D. Balduzzi. Domain generalization for object
recognition with multi-task autoencoders. In Proceedings of the IEEE International Conference
on Computer Vision, pages 2551–2559, 2015.

[19] I. Goodfellow. Nips 2016 tutorial: Generative adversarial networks. arXiv preprint
arXiv:1701.00160, 2016.

[20] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville,
and Y. Bengio. Generative adversarial networks. arXiv preprint arXiv:1406.2661, 2014.

[21] A. Grover, C. Chute, R. Shu, Z. Cao, and S. Ermon. Alignflow: Cycle consistent learning from
multiple domains via normalizing flows. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 34, pages 4028–4035, 2020.

[22] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages
770–778, 2016.

[23] J. Hoffman, E. Tzeng, T. Park, J.-Y. Zhu, P. Isola, K. Saenko, A. Efros, and T. Darrell. Cycada:
Cycle-consistent adversarial domain adaptation. In International conference on machine
learning, pages 1989–1998. PMLR, 2018.

[24] M. Ilse, J. M. Tomczak, C. Louizos, and M. Welling. Diva: Domain invariant variational
autoencoders. In Medical Imaging with Deep Learning, pages 322–348. PMLR, 2020.

[25] A. Khosla, T. Zhou, T. Malisiewicz, A. A. Efros, and A. Torralba. Undoing the damage of
dataset bias. In European Conference on Computer Vision, pages 158–171. Springer, 2012.

[26] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[27] N. Kodali, J. Abernethy, J. Hays, and Z. Kira. On convergence and stability of gans. arXiv
preprint arXiv:1705.07215, 2017.

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional
neural networks. Advances in neural information processing systems, 25:1097–1105, 2012.

[29] Y. LeCun and C. Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.
com/exdb/mnist/.

[30] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales. Deeper, broader and artier domain generalization.
In International Conference on Computer Vision, 2017.

[31] D. Li, Y. Yang, Y.-Z. Song, and T. Hospedales. Learning to generalize: Meta-learning for domain
generalization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[32] H. Li, S. J. Pan, S. Wang, and A. C. Kot. Domain generalization with adversarial feature
learning. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5400–5409, 2018.

[33] Y. Li, M. Gong, X. Tian, T. Liu, and D. Tao. Domain generalization via conditional invariant
representations. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

11

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

[34] Y. Li, X. Tian, M. Gong, Y. Liu, T. Liu, K. Zhang, and D. Tao. Deep domain generalization
via conditional invariant adversarial networks. In Proceedings of the European Conference on
Computer Vision (ECCV), pages 624–639, 2018.

[35] M.-Y. Liu and O. Tuzel. Coupled generative adversarial networks. arXiv preprint
arXiv:1606.07536, 2016.

[36] I. Misra and L. v. d. Maaten. Self-supervised learning of pretext-invariant representations. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
6707–6717, 2020.

[37] K. Muandet, D. Balduzzi, and B. Schölkopf. Domain generalization via invariant feature
representation. In International Conference on Machine Learning, pages 10–18. PMLR, 2013.

[38] V. Piratla, P. Netrapalli, and S. Sarawagi. Efficient domain generalization via common-specific
low-rank decomposition. In International Conference on Machine Learning, pages 7728–7738.
PMLR, 2020.

[39] W. Rudin. Real and complex analysis. Tata McGraw-hill education, 2006.

[40] P. Russo, F. M. Carlucci, T. Tommasi, and B. Caputo. From source to target and back: symmetric
bi-directional adaptive gan. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 8099–8108, 2018.

[41] S. Seo, Y. Suh, D. Kim, J. Han, and B. Han. Learning to optimize domain specific normalization
for domain generalization. arXiv preprint arXiv:1907.04275, 3(6):7, 2019.

[42] S. Shankar, V. Piratla, S. Chakrabarti, S. Chaudhuri, P. Jyothi, and S. Sarawagi. Generalizing
across domains via cross-gradient training. arXiv preprint arXiv:1804.10745, 2018.

[43] J. Shen, Y. Qu, W. Zhang, and Y. Yu. Wasserstein distance guided representation learning for
domain adaptation. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 32,
2018.

[44] B. Sun and K. Saenko. Deep coral: Correlation alignment for deep domain adaptation. In
European conference on computer vision, pages 443–450. Springer, 2016.

[45] A. K. Tanwani. Domain-invariant representation learning for sim-to-real transfer. arXiv preprint
arXiv:2011.07589, 2020.

[46] H. Wang, Z. He, Z. C. Lipton, and E. P. Xing. Learning robust representations by projecting
superficial statistics out. arXiv preprint arXiv:1903.06256, 2019.

[47] Z. Wang, M. Loog, and J. van Gemert. Respecting domain relations: Hypothesis invariance for
domain generalization. arXiv preprint arXiv:2010.07591, 2020.

[48] Y. Zhang, T. Liu, M. Long, and M. Jordan. Bridging theory and algorithm for domain adaptation.
In International Conference on Machine Learning, pages 7404–7413. PMLR, 2019.

[49] H. Zhao, R. T. Des Combes, K. Zhang, and G. Gordon. On learning invariant representations
for domain adaptation. In International Conference on Machine Learning, pages 7523–7532.
PMLR, 2019.

[50] S. Zhao, M. Gong, T. Liu, H. Fu, and D. Tao. Domain generalization via entropy regularization.
Advances in Neural Information Processing Systems, 33, 2020.

[51] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros. Unpaired image-to-image translation using
cycle-consistent adversarial networks. In Proceedings of the IEEE international conference on
computer vision, pages 2223–2232, 2017.

12

Checklist
1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] see Section 6
(c) Did you discuss any potential negative societal impacts of your work? [N/A]
(d) Have you read the ethics review guidelines and ensured that your paper conforms to

them? [Yes]
2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [Yes]
(b) Did you include complete proofs of all theoretical results? [Yes] see our Supplementary

File
3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main experi-
mental results (either in the supplemental material or as a URL)? [Yes]

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] see Section 5

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [Yes]

(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] See Section 5

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [N/A]
(c) Did you include any new assets either in the supplemental material or as a URL? [Yes]

We include our source code in the Supplementary File
(d) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(e) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
5. If you used crowdsourcing or conducted research with human subjects...

(a) Did you include the full text of instructions given to participants and screenshots, if
applicable? [N/A]

(b) Did you describe any potential participant risks, with links to Institutional Review
Board (IRB) approvals, if applicable? [N/A]

(c) Did you include the estimated hourly wage paid to participants and the total amount
spent on participant compensation? [N/A]

A Proofs

For the following proofs, we treat the variables as continuous variables and always use the integral. If
one or some of the variables are discrete, it is straight-forward to replace the corresponding integral(s)
with summation sign(s) and the proofs still hold.

A.1 Remark 1

Proof.

i) If there exists a representation z defined by the mapping p(z|x) that aligns both the marginal
and conditional distribution, then ∀d, d′, y we have:

p(y, z|d) = p(z|d)p(y|z, d)
= p(z|d′)p(y|z, d′) = p(y, z|d′). (8)

By marginalizing both sides of Eq 8 over z, we get p(y|d) = p(y|d′) .

13

ii) If p(y|d) is unchanged w.r.t. the domain d, then we can always find a domain invariant
representation, for example, p(z|x) = δ0(z) for the deterministic case (that maps all x to 0),
or p(z|x) = N (z; 0, 1) for the probabilistic case.

These representations are trivial and not of our interest since they are uninformative of the
input x. However, the readers can verify that they do align both the marginal and conditional
distribution of data.

A.2 Remark 2

Proof.

• If I(z, d) = 0, then p(z|d) = p(z), which means p(z|d) is invariant w.r.t. d.

• If p(z|d) is invariant w.r.t. d, then ∀z, d :

p(z) =

∫
p(z|d′)p(d′)dd′ =

∫
p(z|d)p(d′)dd′

(since p(z|d′) = p(z|d)∀d′)

= p(z|d)
∫
p(d′)dd′ = p(z|d)

=⇒ I(z, d) = 0 (9)

A.3 Theorem 1

Proof.

i) Marginal alignment: ∀z we have:

p(z|d) =
∫
p(x|d)p(z|x)dx

=

∫
p(fd′,d(x

′)|d)p(z|fd′,d(x′))
∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(by applying variable substitution in multiple integral: x′ = fd,d′(x))

=

∫
p(x′|d′)

∣∣∣det Jfd′,d(x
′)
∣∣∣−1 p(z|x′)∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(since p(fd′,d(x′)|d) = p(x′|d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 and p(z|fd′,d(x′)) = p(z|x′))

=

∫
p(x′|d′)p(z|x′)dx′

= p(z|d′) (10)

ii) Conditional alignment: ∀z, y we have:

p(z|y, d) =
∫
p(x|y, d)p(z|x)dx

=

∫
p(fd′,d(x

′)|y, d)p(z|fd′,d(x′))
∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

14

(by applying variable substitution in multiple integral: x′ = fd,d′(x))

=

∫
p(x′|y, d′)

∣∣∣det Jfd′,d(x
′)
∣∣∣−1 p(z|x′)∣∣∣det Jfd′,d(x

′)
∣∣∣ dx′

(since p(fd′,d(x′)|y, d) = p(x′|y, d′)
∣∣∣det Jfd′,d(x

′)
∣∣∣−1 and p(z|fd′,d(x′)) = p(z|x′))

=

∫
p(x′|y, d′)p(z|x′)dx′

= p(z|y, d′) (11)

Note that

p(y|z, d) = p(y, z|d)
p(z|d)

=
p(y|d)p(z|y, d)

p(z|d)
(12)

Since p(y|d) = p(y) = p(y|d′), p(z|y, d) = p(z|y, d′) and p(z|d) = p(z|d′), we have:

p(y|z, d) = p(y|d′)p(z|y, d′)
p(z|d′)

= p(y|z, d′) (13)

B Discussion on the choice of the distance metric between representations

As discussed in Section 3.2, we enforce the representation network gθ to be invariant under the
domain transformation fd,d′ (with any two domains d, d′), meaning that gθ(x) = gθ(fd,d′(x)).

In our implementation, we use the squared error distance as the distance between gθ(x) and
gθ(fd,d′(x)). Admittedly, this distance tends to have the side effect of making the norm of the
representation smaller. However, as visualized in Section 5.3, it does successfully align the distribu-
tions of the representation.

We also considered the distances such as contrastive distance and the cosine distance. We present
below in Table 4 an ablation study with difference choices of the distance metrics, with the Rotated
Mnist experiment with the target domainM75. Note that in this Rotated Mnist dataset, domains
M75 andM0 are (equally) the hardest target domains. Therefore, we chooseM75 for this ablation
study to compare the performance of the variants.

Table 4: Ablation study: Rotated MNIST experiments withM75 as the target domain.

Distance Metric Accuracy

Squared Error Distance 97.1±0.3
Contrastive Distance 95.8±0.9

Cosine Distance 90.1±0.3

As the Squared Error Distance gives the best performance and also is the most stable one in practice,
we decided to use it for our implementation.

15

	Introduction
	Related Work
	Theoretical Approach
	Problem Statement
	Learning a Domain-Invariant Representation with Domain Density Transformation Functions

	An Practical Implementation using Generative Adversarial Networks
	Experiments
	Datasets
	Experimental Setting
	Results

	Conclusion
	Proofs
	Remark 1
	Remark 2
	Theorem 1

	Discussion on the choice of the distance metric between representations

