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Abstract

Federated Learning (FL) refers to the decentralized and privacy-preserving machine
learning framework in which multiple clients collaborate (with the help of a central
server) to train a global model without sharing their data. However, most existing
FL methods only focus on maximizing the model’s performance on the source
clients’ data (e.g., mobile users) without considering its generalization ability to
unknown target data (e.g., a new user). In this paper, we incorporate the problem of
Domain Generalization (DG) into Federated Learning to tackle the aforementioned
issue. However, virtually all existing DG methods require a centralized setting
where data is shared across the domains, which violates the principles of decen-
tralized FL and hence not applicable. To this end, we propose a simple yet novel
representation learning framework, namely FedSR, which enables domain general-
ization while still respecting the decentralized and privacy-preserving natures of
this FL setting. Motivated by classical machine learning algorithms, we aim to
learn a simple representation of the data for better generalization. In particular,
we enforce an L2-norm regularizer on the representation and a conditional mutual
information (between the representation and the data given the label) regularizer
to encourage the model to only learn essential information (while ignoring spu-
rious correlations such as the background). Furthermore, we provide theoretical
connections between the above two objectives and representation alignment in
domain generalization. Extensive experimental results suggest that our method
significantly outperforms relevant baselines in this particular problem.

1 Introduction

In this paper, we are interested the problem of decentralized Federated Learning (FL), where K
clients collaborate to jointly train a machine learning model with their local (decentralized) data. For
privacy reasons, we consider the setting where it is desirable/preferred that the clients do not share
their data with each other. For example, [28] brings up an example scenario where mobile devices
collaborate to train a model without sending their data to a central server. Another example is that K
hospitals train a diagnosis model together but do not want to share their patients’ data.

However, a major concern with this machine learning framework is that it often does not account for
the possible distribution shift on the target data, a problem commonly referred to as Domain General-
ization (DG). Furthermore, and perhaps more problematically, it not straightforward to incorporate
existing DG techniques into this FL setting due to its privacy-preserving nature. Specifically, most
domain invariant representation learning methods [9, 38, 31, 22, 32] require sharing/comparing the
representation of the data across domains, while meta-learning based methods [21, 5] require access
to data from a pool of multiple source domains (in a central server).

There have been some early attempts to incorporate domain generalization into the FL framework.
For example, [27] proposes a technique tailored for medical image segmentation which allows the
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clients to share their data in the frequency space with each other. This can be viewed as a form of data
leakage and is undesirable in the FL setting we consider. Meanwhile, [45] aligns the representation
distribution across domains via a reference distribution (from a generative model). While this does
fully preserve the data privacy, it can be overly complicated to implement in practice, and the
performance is not yet on par with SOTA centralized methods. Nevertheless, this is one of our main
baselines in this paper.

To tackle the above challenges, in this paper, we introduce a simple yet effective method for domain
generalization in the FL setting. We propose to learn a “simple” representation of the data; specifically,
we employ two regularization methods, namely the L2 regularizer on the representation, and the
conditional mutual information between the data and the representation given the label. These
regularizers are easy to implement and do not require the sharing of data between clients, thus fully
respecting the principles of FL. In particular, they aim to restrict the amount of information the
representation can contains, which we hope will help to ignore spurious correlations and lead to better
generalization to unseen target domains. With a deeper look, we show that these regularizers act as
implicit forms of marginal and conditional representation alignment , which also further explains
the performance gain of our method. This means that our method attempts to learn a representation
whose marginal distribution and conditional distribution (given the label) are invariant across the
domains without explicitly comparing those distributions between clients. Our contributions in this
work are as follows:

• We propose a simple method, which aims to learn a simple representation of the data for the
prediction task, for DG in the FL setting. To this end, we revisit two common regularization
methods, namely the conditional mutual information regularizer and the L2-norm regularizer
on the representation, to restrict the amount of information it can contain.

• Furthermore, we show theoretically and empirically that these two regularizer are well
connected with marginal and conditional alignment in the invariant representation learning
framework.

• We validate the effectiveness of our resulting model with a wide range of datasets and model
architectures and show that it significantly outperforms existing FL methods on the domain
generalization task and can even compete with state-of-the-art centralized methods.

2 Related Work

2.1 Federated Learning

One of the first and most common FL algorithms is FedAVG [28], which uses several local SGD
updates within each communication round to the server to save communication cost. In the context
of DG in the FL setting, this method is equivalent to Empirical Risk Minimization in a centralized
setting, and is one of our main baselines. One of the main challenges that FL needs to tackle is
the statistical diversity among the clients (i.e., each client has a different local data distribution). A
great amount of research [23, 48, 12, 24, 17, 36] has been done to tackle this problem (i.e., how to
train a shared model to deal with non-i.i.d. data of the source clients in the FL setting). Another
line of approaches to deal with this problem is to allow each client to have a personalized model
and jointly train the models in a FL way (personalized FL) [13, 6, 4, 8, 16]. Although these above
methods tackle the distribution shift across the source domains/clients, they still have not dealt with
the generalization ability to an unseen target domain – the problem we consider in this paper.

2.2 Domain Generalization

Most of the existing DG methods consider a centralized setting. A predominant and effective approach
is to learn a domain-invariant representation [30, 25, 26, 43, 2, 15, 47, 1, 22, 38, 35] (meaning to
learn a representation whose marginal distribution and/or conditional distribution given the label
are unchanged across the domains), hoping that this representation generalizes better to an unseen
target domain. Our method can be viewed as implicit forms of representation alignment, thus more
suitable for the FL setting. Another line of approaches for DG is to use the idea of meta-learning
[7, 5, 21]; with the logic being that if a model can adapt among the source domains well, it is more
likely to adapt to an unseen target domain. These methods typically require access to a pool of data
from source domains (in a centralized server). [46] considers a single-domain domain generalization
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setting. However, it needs to generate a “fake” target distribution from a source distribution and then
maximize the mutual information between the representations of the two domains (source vs fake
target). This might be overly complicated when applied at each client level in a FL setting and hence
less practical. [34] considers a federated domain adaptation, where each source domain aligns the
representation distribution with the target domain by receiving the representations from this target
distribution. This cannot be applied to our problem setting to align the representation of two clients,
since one client cannot have access to another source client’s data (including the data representation)
for privacy reasons.

3 Approach

3.1 Preliminaries

We first present the problem of Federated Learning and the importance of Domain Generalization in
this setting.

Federated Learning In the conventional FL setting, K clients collaborate with each other to
train a global model. Each clients i (1 ≤ i ≤ K) has its own data distribution pi(x, y), where
x ∈ X is the input and y ∈ Y is its corresponding label, and a dataset with Ni data points:
Di = {(x(1)

i , y
(1)
i ), ..., (x

(Ni)
i , y

(Ni)
i )}. It is often assumed that the data distribution pi(x, y) changes

across the clients (which we will use interchangeably with domains in this paper). Here, the data
distributions pi(x, y) are sampled from a family E of distributions (E can be finite or infinite), i.e.,
pi(x, y) ∼ E . Our aim is for the clients to jointly train a global model with parameters w (this model
will be specified later), with the loss function of a datapoint (x, y) denoted as ℓ(w;x, y).

The global objective function to minimize is:

f(w) :=
1

K

K∑
i=1

fi(w) (1)

where fi(w) is the local objective function, fi(w) = Epi(x,y)[ℓ(w;x, y)] ≈
1
Ni

∑Ni

n=1 ℓ(w;x
(n)
i , y

(n)
i ). Note that the objective in Eq. 1 can also be a weighted average

among the clients. However, since the analysis and discussion are unchanged, we will use this simple
average objective in this paper.

In most Federated Learning algorithms, the optimization process consists of a number of rounds.
Within each round, each (active) client runs its own local minimization of the local objective for
several iterations of stochastic gradient descent; then the central server will collect the newly-learned
parameters from all (active) clients, average them to form the new global parameter, and broadcast it
back to each client at the beginning of next round. By taking multiple steps of the local minimization
each round, the algorithm can reduce the communication cost (which is often the bottleneck). For a
more detailed description of these FL methods, we refer the readers to [28, 42, 37].

Domain Generalization In the DG problem, we are more interested in training a model to perform
well in an unseen target domain pT (x, y) ∼ E (which is different from pi(x, y) ∀i). Therefore, we
hope to minimize not only the expected loss on the source domains/clients Epi(x,y)[ℓ(w;x, y)] but
also the loss on unseen target domains, in either an average or worst-case sense as defined below.

In the average case, we want to minimize this loss over the distribution family E :

EpT∼E
[
EpT (x,y)[ℓ(w;x, y)]

]
(2)

Meanwhile, we might also be interested in the worst-case quantity, i.e., the loss of the domain in
which the model performs the worst:

sup
pT∈E

[
EpT (x,y)[ℓ(w;x, y)]

]
(3)

In a conventional machine learning problem, we usually need to observe more datapoints to learn
to generalize better to unseen datapoints. Similarly, in this Domain Generalization problem,
we additionally need to observe more domains in order to generalize better to unseen target
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domains. However, we typically have a limited number of source domains in these DG problems, so
regularization techniques often need to be applied for a better generalization. One common technique
among those is to learn a domain invariant representation, which means to learn a representation z
of x that has the same marginal and/or conditional distribution across the domains. These methods
often help to ignore domain-specific spurious correlations and lead to better generalization. We will
discuss this in more detail later in the paper.

Generalization Challenge of FL From the objective in Eq. 1, it is clear that conventional FL
methods only focus on maximizing the performance (minimizing the loss) on K source clients’ data,
which is very problematic in many applications. For example, if K clinical institutes in the US
and UK collaborate to train a Covid prediction model, the goal is not only to perform well on their
own data distributions but also to generalize well to data from other countries. Similarly, if we use
Federated Learning to train a machine learning model with data collected from multiple mobile phone
users, it is crucial that the model can generalize to a new user. Thus, domain generalization is very
important for Federated Learning.

However, as mentioned earlier, applying existing domain generalization techniques to Federated
Learning is not straightforward. This is because most existing DG methods need a centralized
training setting with data (or a part of the data, such as a representation) being shared across the
domains. For example, the aforementioned domain invariant representation learning approach
typically requires sharing and comparing the representation distribution across domains. Towards
this end, we propose a simple but effective domain invariant representation learning technique for
Federated Learning that fully keeps its decentralized and privacy aspects. We first introduce the
problem setting of representation learning in Subsection 3.2, and then present our domain invariant
representation learning methods in Subsection 3.3.

3.2 Problem Setting: Representation Learning for Domain Generalization

In the representation learning framework, we aim to learn a representation z of x with a distribution
p(z|x) parameterized by w1, which we omit here for notation simplicity. This can be a deterministic
mapping (i.e., p(z|x) = δgw1

(x)(z) where δ is the dirac delta function) or a probabilistic mapping
(e.g., p(z|x) = N (z;µw1(x), σ

2
w1

(x)) where N is the normal distribution). With the data distribution
pi(x, y) of client i, its joint distribution of x, y, z is:

pi(x, y, z) = pi(x, y)p(z|x), since z is conditionally independent of y given x (4)

From the representation z, we learn a classifier/regressor that predicts y given z with the predictive
distribution p̂(y|z) parameterized by w2 (again, we omit w2 here for notation simplicity). For
example, with a classification problem, this is often just a linear layer followed by a softmax layer to
form the predictive distribution.

The predictive distribution of y given x of our model is:

p̂(y|x) = Ep(z|x)[p̂(y|z)] (5)

Note that when p(z|x) is a deterministic mapping, Eq. 5 simplifies into p̂(y|z = gw1(x)).

For both regression and classification, the loss function of a data point x, y is often the negative log
predictive, i.e, ℓ(w;x, y) = − logEp(z|x)[p̂(y|z)], and in this case w = {w1, w2}.

Hence, the local objective of client i is:

fi(w) = Epi(x,y)

[
− logEp(z|x)[p̂(y|z)]

]
(6)

During training, for a probabilistic mapping, we often sample a single z per x from p(z|x) (for a
deterministic mapping, it is obvious that we only sample one z), leading to the training objective:

fi(w) = Epi(x,y)

[
Ep(z|x)[− log p̂(y|z)]

]
(7)

≈ 1

Ni

Ni∑
n=1

− log p̂(y
(n)
i |z(n)i ), where z

(n)
i is a single sample from p(z|x(n)

i ) (8)
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The quantity − log p̂(y|z) is often non-negative for all common predictive distributions. For example,
with a categorical predictive distribution in a classification problem, this is the cross-entropy loss;
while with a Gaussian predictive distribution (with a fixed variance) in a regression problem, this
becomes the squared error (with an additive constant).

Note that according to Jensen’s Inequality, fi(w) is an upper bound of fi(w), so the training process
is sound.

The representation learning framework that we discussed so far still has not dealt with the problem of
domain generalization. Many existing works in DG focus on learning a domain-invariant representa-
tion z, which means to learn a representation z which has the same marginal (pi(z)) and/or conditional
(pi(z|y) or pi(y|z)) distributions across the domains. However, this often requires sharing information
of the data (the representation) across domains/clients, which is not allowed in Federated Learning.

Motivated by the fact that classical machine learning algorithms make predictions based on a simple
representation of the data and often generalize better than modern deep learning models, in this paper,
we aim to learn a Simple Representation of the data (hence the name FedSR). We apply several
well-known regularization techniques to restrict the representation’s complexity and encourage the
deep network p(z|x) to only learn the essential information. Furthermore, we show that these
regularization techniques have strong theoretical connections to domain-invariant representation
learning and that they can achieve good generalization performance in practice.

3.3 FedSR

As mentioned earlier, we employ an L2-norm regularizer (ℓL2R
i ) on the representation and (an upper

bound of) the conditional mutual information between the data and the representation given the label
(ℓCMI

i ) to restrict the amount of information the representation can contain. Moreover, ℓL2R
i also has

the effect to align the marginal distribution pi(z) to be centered around 0 as a Gaussian distribution,
while ℓCMI

i aligns the conditional distribution pi(z|y) to a reference distribution (also chosen to be
Gaussian in the experiment section). These two terms will be explained in detail below. The final
local objective function of each client i is:

fi + αL2RℓL2R
i + αCMIℓCMI

i (9)

where αL2R and αCMI are hyper-parameters. (We will also test the two regularizers separately,
namely the FedL2R and FedCMI variants.)

3.3.1 L2-norm Regularizer

In optimization and learning theory, L2-norm of the weights/parameters is often regarded to as a
measure of the model’s complexity. Here, with a similar idea, we enforce an L2-norm Regularizer
(L2R) on the representation (not the network parameters) to restrict the complexity of the representa-
tion. (Note that some methods like [29] use the L2-norm but in the parameter space to help with the
generalization of Federated Learning). Specifically, the regularizer has the form:

ℓL2R
i = Epi(x)

[
Ep(z|x)[||z||22]

]
(10)

≈ 1

Ni

Ni∑
n=1

||z(n)i ||22, where z
(n)
i is a single sample from p(z|x(n)

i ) (11)

Intuitively, this regularizer will have the effect of encouraging z to be centered around 0 for all clients,
thus helping with the marginal alignment of the representation. This connection can be explained in
more detail as below:

Connection to Domain Invariant Representation Learning: First of all, rewrite ℓL2R
i as:

ℓL2R
i = Epi(x)

[
Ep(z|x)[||z||22]

]
= Epi(x,z)

[
||z||22

]
= Epi(z)

[
||z||22

]
(12)

Now, consider a “reference” distribution q(z) = N (0, σ2I) (with a small σ). Then we have:

− log q(z) =
||z||22
2σ2

(with an additive constant) (13)
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And hence:

ℓL2R
i = Epi(z)

[
||z||22

]
= 2σ2Epi(z) [− log q(z)] = 2σ2H(pi(z), q(z)) (14)

where H(pi(z), q(z)) denotes the cross entropy from q(z) to pi(z).

Note further that:

H(pi(z), q(z)) = H(pi(z)) + KL[pi(z)|q(z)] (15)

Hence, if the entropy H(pi(z)) does not change significantly during training, minimizing ℓL2R
i will

also minimize KL[pi(z)|q(z)], which encourages pi(z) to be close to q(z), i.e., an implicit alignment
of the marginal distribution.

Nevertheless, also according to the above equation, if we really want to minimize KL[pi(z)|q(z)] (for
the marginal alignment), it is perhaps more rigorous to minimize the regularizer ℓL2R

i − 2σ2H(pi(z))
instead of ℓL2R

i . However, when σ is small enough, this term is dominated by ℓL2R
i (meaning that if

σ is small, minimizing ℓL2R
i almost guarantees to minimize KL[pi(z)|q(z)]). Empirically, we found

that the two variants achieve almost identical performance. We therefore recommend using ℓL2R
i

instead of ℓL2R
i − 2σ2H(pi(z)) for its simplicity.

3.3.2 Conditional Mutual Information regularizer

The mutual information term between the input x and the representation z (denoted I(x, z)) is often
used to regularize the amount of information z can contains [3, 39]. However, this regularizer might
be too restrictive in practice if its coefficient is not tuned properly, as it encourages the representation
to contain no information about the input data. In this paper, we use the conditional mutual
information of x and z given y, as it is less restricted than the former. We can also later see that this
is well-connected with conditional distribution alignment in DG. Recall that this conditional mutual
information term is calculated for domain/client i as:

Ii(x, z|y) = Epi(x,y,z)

[
log

pi(x, z|y)
pi(x|y)pi(z|y)

]
(16)

Intuitively, the terms fi and Ii(x, z|y) work together to enforce the representation z to contain only the
information needed to predict the label y, and no additional information (non-label-related) about x.

However, unfortunately, this mutual information term is not tractable because of pi(z|y) (which is
hard to compute due to the integration over x). Therefore, we derive an upper bound in order to
minimize it. Specifically:

Lemma 1. Let r(z|y) be a(ny) conditional distribution of z given y ∀y ∈ Y . If p(z|x) and r(z|y)
have the same support set ∀x ∈ X , y ∈ Y , we have:

Ii(x, z|y) ≤ Epi(x,y) [KL[p(z|x)|r(z|y)]] = ℓCMI
i (17)

Proof. Provided in the Supplementary Material.

Here, the upper bound ℓCMI
i can be computed and used as a regularizer when training the represen-

tation network. We optimize both p(z|x) and r(z|y) in order to minimize ℓCMI
i . Note that r(z|y)

can be a network that takes y as an input and output the distribution r(z|y); or more simply for
classification (when we have a finite number of labels y), we can set r(z|y) = N (z;µy, σ

2
y), where

µy, σ
2
y (y = 1..C) are the parameters to be optimized, with C being the number of classes.

Note also that if we use this (upper bound) regularizer ℓCMI
i , it requires the representation mapping

p(z|x) to be probabilistic (due to the KL term). Hence, in the experimental section, we use a
probabilistic representation network (p(z|x) = N (z;µw1

(x), σ2
w1

(x))) for any models/variants with
the ℓCMI

i objective, and use a deterministic network otherwise. With the empirical dataset Di of
client i, we have an empirical estimator of ℓCMI

i as below:
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ℓCMI
i = Epi(x,y) [KL[p(z|x)|r(z|y)]]

≈ 1

Ni

Ni∑
n=1

KL[p(z|x(n)
i )|r(z|y(n)i )] (18)

Connection to Domain Invariant Representation Learning: We found out that this regularizer
has a theoretical connection with conditional distribution alignment in domain generalization. We
start with the following lemma:
Lemma 2.

ℓCMI
i = Epi(x,y) [KL[p(z|x)|r(z|y)]] ≥ Epi(y) [KL[pi(z|y)|r(z|y)]] (19)

Proof. Provided in the Supplementary Material.

Therefore, by minimizing ℓCMI
i , we also minimize the divergence KL[pi(z|y)|r(z|y)] ∀y, forcing

pi(z|y) and r(z|y) to be close to each other: pi(z|y) ≈ r(z|y). Therefore, the model will try to
enforce pi(z|y) ≈ pj(z|y)(≈ r(z|y)) ∀ clients/domains i, j, i.e., we are doing implicit alignment of
the conditional distribution of the representation z given the label y, which is a common and effective
technique in conventional Domain Generalization. For example, [26, 25, 47] explicitly align this
conditional distribution (not suitable for Federated Learning).

3.3.3 Implementation Choices and Optimization

For the federated optimization, we use FedAVG, which is one of the first and perhaps most common
FL optimization algorithms (although we can use any federated optimization techniques).

Following common practice, we use mini-batches to approximate Eq. 8, Eq. 18, and Eq. 11 (instead
of full-batch training).

For a probabilistic network (when using ℓCMI ), to allow the gradient to backpropagate through
the samples z(n)i to the network parameters w1, we use the reparameterization trick [18]. With this
reparameterization trick, fi and ℓL2R

i can be implemented and back-propagated straightforwardly.

Regarding the conditional mutual information regularizer ℓCMI
i , we use a Gaussian distribution for the

variational conditional distribution r(z|y), hence the KL term in Eq. 18 can be computed analytically
(recall that we also use a Gaussian distribution for p(z|x)). Here the astute readers might wonder
that such a simple choice of the variational distribution r(z|y) might not be able to approximate
pi(z|y). However, note that since both p(z|x) and r(z|y) are optimized in order to minimize ℓCMI

i ,
it encourages the network to learn a simple representation so that the variational distribution r(z|y)
can match pi(z|y) (which arguably might be a good regularization effect). Furthermore, depending
on datasets, we can, in theory, use more complex distributions such as a Gaussian mixture as the
variational distribution. In such cases, one can use methods such as MC sampling to estimate the KL
term. In our experiment section, for simplicity, we only use a Gaussian distribution for r(z|y).

4 Experiments

4.1 Datasets

To evaluate our method, we perform experiments in four datasets (ranging from easy to more
challenging) that are commonly used in the literature for domain generalization.

RotatedMNIST [10]: In this dataset, the MNIST images [19] are rotated counter-clockwise with an
angle of 0◦, 15◦, 30◦, 45◦, 60◦ and 75◦ to form six domains M0,M15,M30,M45,M60 and M75.
The task is classification with ten classes (digits 0 to 9). We use the same version of the dataset as in
[31, 15] (where only 1000 images are rotated to form the domain) for easy comparison. Note that
this is slightly different from the version in [11] and thus the numbers are not comparable.

PACS [20]: contains 9,991 images from four different domains: art painting, cartoon, photo, sketch.
The task is classification with seven classes.
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Table 1: RotatedMNIST. Reported numbers are from 3 runs

Domains

Models M0 M15 M30 M45 M60 M75 Average

HIR [43] 90.34 99.75 99.40 96.17 99.25 91.26 96.03
Centralized DIVA [15] 93.5 99.3 99.1 99.2 99.3 93.0 97.2

Methods DGER [47] 90.09 99.24 99.27 99.31 99.45 90.81 96.36
DIRT-GAN [31] 97.2 99.4 99.3 99.3 99.2 97.1 98.6

FedAVG [28] 85.9±0.6 98.7±0.2 98.8±0.2 98.9±0.1 98.7±0.2 86.2±0.7 94.5
FedADG [45] 89.9±0.5 98.9±0.2 99.0±0.1 99.1±0.1 98.9±0.2 90.2±0.4 96.0

FL FedCMI (ours) 91.5±0.3 99.2±0.1 99.3±0.1 99.2±0.1 99.2±0.1 91.0±0.3 96.5
methods FedL2R (ours) 90.5±0.5 99.1±0.2 99.2±0.1 99.1±0.1 99.2±0.1 90.7±0.6 96.3

FedSR (ours) 91.6±0.3 99.3±0.1 99.3±0.1 99.2±0.1 99.3±0.1 91.5±0.3 96.7

Table 2: PACS. Reported numbers are from 3 runs

PACS

Models Backbone A C P S Average

Centralized DGER [47] Resnet18 80.70 76.40 96.65 71.77 81.38
Methods DIRT-GAN [31] Resnet18 82.56 76.37 95.65 79.89 83.62

FedAVG [28] Resnet18 77.8±0.5 72.8±0.4 91.9±0.5 78.8±0.3 80.3
FedADG [45] Resnet18 77.8±0.5 74.7±0.4 92.9±0.3 79.5±0.4 81.2

FL FedCMI (ours) Resnet18 80.8±0.4 73.7±0.2 92.8±0.5 79.5±0.2 81.7
Methods FedL2R (ours) Resnet18 82.2±0.4 75.8±0.3 92.8±0.4 81.6±0.1 83.1

FedSR (ours) Resnet18 83.2±0.3 76.0±0.3 93.8±0.5 81.9±0.2 83.7

OfficeHome [41]: has 15,500 images of daily objects from four domains: art, clipart, product and
real. There are 65 classes in this classification dataset.

DomainNet [33] is a large-scale dataset, consisting 586,575 images from 345 classes. These images
are from 6 domains: clipart, infograph, painting, quickdraw, real, sketch.

4.2 Experimental Setting

For all datasets, we perform “leave-one-domain-out” experiments, where we choose one domain as
the target domain, train the model on all remaining domains, and evaluate it on the chosen domain.
Each source domain is treated as a client. Following standard practice, we use 90% of available data
as training data and 10% as validation data. We train all our models with NVIDIA A100 GPUs from
our AWS cluster.

For the RotatedMNIST dataset, we use a network of two 3x3 convolutional layers and a fully
connected layer as the representation network gθ to get a representation z of 64 dimensions. A single
linear layer is then used to map the representation z to the ten output classes. This architecture is the
same as the network used by [15, 31]. We train our network for 500 epochs with stochastic gradient
descent (SGD), using a learning rate of 0.001 and minibatch size 64, and report performance on the
test domain after the last epoch. Each client performs 5 local optimization iterations within each
communication round (E = 5).

For the PACS datasets, for easy comparison with existing centralized domain invariant representation
learning methods, we use the most common choice of backbone network in existing works as the
representation networks, i.e., Resnet18 [14]. We use a ResNet50 [14] backbone for OfficeHome and
DomainNet since they are more complex datasets. We replace the last fully connected layer of the
backbone with a linear layer of dimension 512 for ResNet18 and 2048 for ResNet50 to form the
representation network. As with the RotatedMNIST experiment, we use a single layer to map from
the representation z to the output. Each local client uses stochastic gradient descent (SGD) (a total of
5000 iterations) with learning rate 0.01, momentum 0.9, minibatch size 64, and weight decay 5e−4.
Similar to the RotatedMNIST experiments, each client performs 5 local optimization iterations within
each communication round (E = 5). However, we also found that our method is not sensitive to this
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Table 3: OfficeHome. Reported numbers are from 3 runs

OfficeHome

Models Backbone A C P R Average

Centralized Mixup [44] Resnet50 64.7 54.7 77.3 79.2 69.0
Methods CORAL [38] Resnet50 64.4 55.3 76.7 77.9 68.6

FedAVG [28] Resnet50 62.2±0.9 55.6±0.9 75.7±0.2 78.2±0.2 67.9
FedADG [45] Resnet50 63.2±0.9 57.0±0.2 76.0±0.1 77.7±0.5 68.4

FL FedCMI (ours) Resnet50 61.8±0.5 55.5±0.9 76.3±0.1 77.4±0.1 67.8
Methods FedL2R (ours) Resnet50 64.5±0.3 56.5±0.5 76.1±0.2 77.9±0.2 68.8

FedSR (ours) Resnet50 65.4±0.5 57.4±0.2 76.2±0.6 78.3±0.3 69.3

Table 4: DomainNet. Reported numbers are from 3 runs

DomainNet

Models Backbone C I P Q R S AVG

Centralized MLDG [21] Resnet50 59.5 19.8 48.3 13.0 59.5 50.4 41.8
Methods CORAL [38] Resnet50 58.7 20.9 47.3 13.6 60.2 50.2 41.8

FedAVG [28] Resnet50 59.3±0.7 16.5±0.9 44.2±0.7 10.8±1.8 57.2±0.8 49.8±0.4 39.6
FedADG [45] Resnet50 60.9±0.6 17.2±0.2 44.3±0.2 12.4±0.2 57.6±0.9 50.3±0.8 40.4

FL FedCMI (ours) Resnet50 59.0±0.9 18.0±0.7 44.6±0.5 12.2±0.4 56.2±0.2 50.0±0.4 40.0
Methods FedL2R (ours) Resnet50 60.2±0.6 18.1±0.4 44.9±0.6 11.0±0.9 57.8±0.4 51.5±0.7 40.6

FedSR (ours) Resnet50 61.0±0.6 18.6±0.4 45.2±0.5 13.4±0.6 57.6±0.2 51.8±0.3 41.3

hyper-parameter (performance with E = 100 is almost identical). For the hyper-parameters of our
method (βCMI and βL2R), we follow [11] and use random search to tune their value based only on
the validation set (no data leakage from the target domain). This protocol is highly recommended by
[11] and allows for a fair comparison among the methods. For details of the tuned values, please refer
to our supplementary material. Data augmentation is also standard practice for real-world computer
vision datasets like PACS, OfficeHome and Domainet, and during the training we augment our data
as follows: crops of random size and aspect ratio, resizing to 224 × 224 pixels, random horizontal
flips, random color jitter, randomly converting the image tile to grayscale with 10% probability, and
normalization using the ImageNet channel means and standard deviations. Our code will be released
at https://github.com/atuannguyen/FedSR.

4.3 Baselines

For all experiments, we consider the FL algorithms to be our main baselines: FedAVG [28] (a
common FL algorithm) and FedADG [45] (an existing FL algorithm with DG ability). For the
RotatedMNIST and PACS experiments, we also include SOTA centralized domain-invariant methods
for comparison (the numbers are taken directly from the original papers). For the OfficeHome
and DomainNet experiments, since our setting (e.g., backbone network) and evaluation protocol
are identical to those of DomainBed [11], our results can be compared directly to the results of
the centralized methods recorded in that paper. Therefore, we also include the best performers for
each dataset reported in the DomainBed paper. Note that we include these centralized methods for
reference only, and they are not direct competitors of our model(s). For this reason, we highlight (in
bold) the best performant model for the centralized and FL settings separately.

4.4 Results

Tables 1, 2, 3 and 4 show that our method (FedSR) outperforms the baseline FedAVG significantly
(by a margin of 1.5% to 3% on average) and consistently in all experiments. FedADG [45] (a
existing method for DG in the FL setting) does outperform FedAVG but is not yet on par with
centralized methods. Meanwhile, FedSR achieves competitive results when compared to state-of-the-
art centralized DG methods (as listed in the first half of the tables). This indicates the effectiveness
of our method and the potential for Domain Generalization in the FL setting. As mentioned earlier,
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our method can be interpreted as an implicit form of representation alignment. Please refer to
our supplementary material for the visualization of our representation space, which does show the
alignment effect of our method.

5 Conclusion

To conclude, in this paper, we present a simple and effective method for implicit alignment of the
representation across domains/clients in a Federated Learning setting for a better domain general-
ization ability. We employ two regularization techniques, namely CMI and L2R, to learn a simple
representation of the data in the hope for a better generalization. Furthermore, we also show that these
regularizers implicitly align the marginal and conditional distribution of the representation, which
are shown to be effective in the domain generalization problem. Extensive experiments show that our
method outperforms relevant FL baselines (FedAVG, FedADG) and can even achieve competitive
DG performance when compared to centralized approaches. A potential limitation of our method
is that the invariance is enforced among the source domains and might fail to generalize to the unseen
target domain (since the target domain can be arbitrary). However, this is a common comment for
all domain invariant representation methods and not specific to ours. Furthermore, experiments show
that our method does lead to better representation alignment and prediction performance in practice.
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A Proofs

A.1 Lemma 1

Proof. Recall that the joint distribution of x, y, z for client i is:

pi(x, y, z) = pi(x, y)p(z|x) = pi(y)pi(x|y)p(z|x) (20)

We have:

13



Ii(x, z|y) = Epi(x,y,z)

[
log

pi(x, z|y)
pi(x|y)pi(z|y)

]
(21)

= Epi(x,y,z)

[
log

pi(x|y)p(z|x)
pi(x|y)pi(z|y)

]
(22)

= Epi(x,y,z)

[
log

p(z|x)
pi(z|y)

]
(23)

= Epi(x,y,z)

[
log

p(z|x)
pi(z|y)

]
(24)

= Epi(x,y,z) [log p(z|x)− log pi(z|y)] (25)

Notice that:
Epi(y) [KL[pi(z|y)|r(z|y)]] ≥ 0 (26)

⇒Epi(y)

[
Epi(z|y)[log pi(z|y)− log r(z|y)]

]
≥ 0 (27)

⇒Epi(y,z) [log pi(z|y)− log r(z|y)] ≥ 0 (28)

⇒Epi(x,y,z) [log pi(z|y)− log r(z|y)] ≥ 0 (29)

⇒Epi(x,y,z) [log pi(z|y)] ≥ Epi(x,y,z) [log r(z|y)] (30)

(31)

Therefore:
Ii(x, z|y) = Epi(x,y,z) [log p(z|x)− log pi(z|y)] (32)

≤ Epi(x,y,z) [log p(z|x)− log r(z|y)] (33)

= Epi(x,y)

[
Ep(z|x)[log p(z|x)− log r(z|y)]

]
(34)

= Epi(x,y) [KL[p(z|x)|r(z|y)]] (35)

A.2 Lemma 2

Proof. We need to prove:
Epi(x,y) [KL[p(z|x)|r(z|y)]] ≥ Epi(y) [KL[pi(z|y)|r(z|y)]] (36)

⇔Epi(x,y,z)[log p(z|x)− log r(z|y)] ≥ Epi(y,z)[log pi(z|y)− log r(z|y)] (37)

⇔Epi(x,y,z)[log p(z|x)] ≥ Epi(y,z)[log pi(z|y)] (38)

(since Epi(x,y,z)[log r(z|y)] = Epi(y,z)[log r(z|y)]) (39)

⇔Epi(y)

[
Epi(x,z|y)[log p(z|x)]

]
≥ Epi(y)

[
Epi(z|y)[log pi(z|y)]

]
(40)

(41)

Therefore, we only need to prove that Epi(x,z|y)[log p(z|x)] ≥ Epi(z|y)[log pi(z|y)] ∀y.

This is equivalent to:∫
z

∫
x

pi(x, z|y) log p(z|x)dxdz ≥
∫
z

pi(z|y) log pi(z|y)dz (42)

⇔
∫
z

∫
x

pi(x|y)[p(z|x) log p(z|x)]dxdz ≥
∫
z

pi(z|y) log pi(z|y)dz (43)

⇔
∫
z

Epi(x|y)[p(z|x) log p(z|x)]dz ≥
∫
z

pi(z|y) log pi(z|y)dz (44)

Notice that the function f(a) = a log a, a > 0 is a convex function since f ′′(a) = 1
a > 0 ∀a > 0.

Hence, due to Jensen’s Inequality we have:
Epi(x|y)[p(z|x) log p(z|x)] ≥ b log b (45)
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where b = Epi(x|y)[p(z|x)] = pi(z|y).

Therefore, Epi(x|y)[p(z|x) log p(z|x)] ≥ pi(z|y) log pi(z|y). Then, inequality 44 holds, and we
conclude our proof.

B Details on the ℓCMI
i objective

As mentioned in the main paper, we use a Gaussian distribution for both p(z|x) and r(z|y), so that
the KL term can be computed analytically.

Let w1 be the parameter of the (probabilistic) representation network. Given an input x0 (of a
datapoint (x0, y0)), the network output the mean and standard deviation of the Gaussian distribution
p(z|x0) (both from the final layer of the network), denoted µw1(x0) and σw1(x0). This means that
p(z|x0) = N (z;µw1

(x0), σ
2
w1

(x0)).

Also as pointed out in the paper, for a classification problem (where there is a finite number of the
labels), we set r(z|y) = N (z;µy, σ

2
y), where µy, σy (y = 1..C) are the variational parameters to be

optimized. Therefore, for the datapoint x0, y0, we have r(z|y0) = N (z;µy0 , σ
2
y0
).

Note that when z is a K-dimensional vector, µw1
(x0), σw1

(x0), µy0
and σy0

are all K-dimensional.

The KL term in ℓCMI can be computed analytically as:

log σy0
− log σw1

(y0) +
σ2
w1

(x0) + (µw1
(x0)− µy0

)2

2σ2
y0

− 1

2
(46)

If K > 1 (i.e., z is high dimensional), the calculations in Eq. 46 are element-wise, and the result are
summed across the dimension K at the end.

As this computation is deterministic with respect to w1 and µy, σy (y ∈ 1..C), the gradient w.r.t.
these parameters can be computed straight-forwardly.

C Experiments

C.1 Hyper-parameters:

As mentioned in the main text, we use random search to tune the hyper-parameters of our method,
namely αCMI and αL2R. Specifically, the tuned value for those parameters are:

RotatedMNIST

• FedL2R: αL2R = 0.1

• FedCMI: αCMI = 0.3

• FedSR: αL2R = 0.1, αCMI = 0.3

PACS

• FedL2R: αL2R = 0.01

• FedCMI: αCMI = 0.01

• FedSR: αL2R = 0.01, αCMI = 0.001

OfficeHome

• FedL2R: αL2R = 0.05

• FedCMI: αCMI = 0.0005

• FedSR: αL2R = 0.05, αCMI = 0.0005
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DomainNet

• FedL2R: αL2R = 0.01

• FedCMI: αCMI = 0.005

• FedSR: αL2R = 0.01, αCMI = 0.0005

C.2 Visualization of the Representation space

We also visualize the representation space of our method and observe that it aligns the representation
much better than the conventional FL baseline FedAVG (which does not actively attempt to align
the representation distributions). Specifically, Figure 1 show the t-SNE [40] visualization of the
representation of FedSR and FedAVG in the RotatedMNIST experiment, with M0 (the target domain)
and M15 (one of the source domains). We can clearly see that both the marginal and the conditional
distributions of the representation are aligned better between the two domains for FedSR.
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Figure 1: Visualization using t-SNE of the representation space of our method FedSR and the
baselines FedAVG. For each method, the left subfigure corresponds to one source domain M15 and
the right one corresponds to the target domain M0. Each color represents a digit class.
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