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Abstract

It has been reported that deep learning models are extremely vulnerable to small but
intentionally chosen perturbations of its input. In particular, a deep network, despite its
near-optimal accuracy on the clean images, often mis-classifies an image with a worst-case but
humanly imperceptible perturbation (so-called adversarial examples). To tackle this problem,
a great amount of research has been done to study the training procedure of a network to
improve its robustness. However, most of the research so far has focused on the case of su-
pervised learning. With the increasing popularity of self-supervised learning methods, it is
also important to study and improve the robustness of their resulting representation on the
downstream tasks. In this paper, we study the problem of robust representation learning with
unlabeled data in a task-agnostic manner. Specifically, we first derive an upper bound on the
adversarial loss of a prediction model (which is based on the learned representation) on any
downstream task, using its loss on the clean data and a robustness regularizer. Moreover,
the regularizer is task-independent, thus we propose to minimize it directly during the repre-
sentation learning phase to make the downstream prediction model more robust. Extensive
experiments show that our method achieves preferable adversarial performance compared to
relevant baselines.

1 Introduction

Deep learning has achieved state-of-the-art performance in many tasks such as image classifica-
tion, object detection, and natural language processing. Instead of having to select handcrafted
features and representation of the input as in classical machine learning, deep learning has the
ability to automatically learn a meaningful representation with deep networks and gradient de-
scent. However, the success of deep learning relies on the availability of a large amount of labeled
data, which is expensive in practice. Self-supervised learning [1, 2, 3, 4] has gained interest as
a solution to the above problem due to its ability to learn from unlabeled data. However, al-
though the representation learned via self-supervised learning is often meaningful for downstream
tasks, the resulting prediction model usually lacks adversarial robustness. Currently, to the best of
our knowledge, virtually all existing adversarial training methods [5, 6] require labels and/or the
prediction task. Furthermore, for computational reasons, we do not want to re-do the expensive
adversarial training for the downstream tasks (this is also in the spirit of self-supervised learning);
therefore, the (theoretical) transferability of a robust representation among different tasks is also
crucial. However, this transferability aspect of robustness has not been well-studied. For example,
[7] proposes a framework for adversarial contrastive learning, which enforces the robustness of
the representation network by finding worst-case adversaries that maximize the contrastive loss,
followed by minimizing that loss with respect to the network parameters. However, it is not clear
how this robustness can be transferred to a downstream task.

In this paper, we develop a task-independent robust representation learning method to tackle
the above issue. Intuitively, if we could enforce the representation z of an input x to be close to
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Figure 1: Illustration of our proposed regularizer. This figure illustrates the (probabilistic)
representation space, with each circle representing (the distribution of) the representation of an
image. Non-filled circles depict the (probabilistic) representations of natural images and filled cir-
cles depict that of their adversarial examples. We use the KL divergence to pull the representations
of an image and its adversarial images closer, which improves the bound of the adversarial loss on
a downstream task.

Figure 2: Visualization of the probablistic representation of our method. Each color
corresponds to a single image. For each image x, we sample 20 z’s from the probabilistic represen-
tation distribution pθ(z|x) (hence the clusters of points). The left figure is for the original images
and the right figure is for the unsupervised adversaries. Our method enforces the representation
distribution of an image to be close to that of its adversaries, making the downstream models more
robust.

that of its neighbors in the adversarial ball (for example, a l∞ ball around x), then it would make
the downstream model more robust (Figure 1). In particular, any adversarial example xadv of x
produced by an attack on the downstream task is within this adversarial ball, thus its representation
would be close to that of x, making it harder for the task’s decision boundary to separate them.
However, there are some challenges when applying this idea naively. One might think that we can
find a worst-case adversarial example xu adv (unsupervised adversary, as opposed to the typical
supervised adversary xadv) with the largest distance to x in the representation space (based on
some distance metrics), and minimize that distance with respect to the network’s parameters.
This, however, is problematic for a typical deterministic representation network, since it is not
trivial how to define the distance on the representation space (for example, using the l2 distance
between the representations would not help since the model can “cheat” by making the norm of
the representation smaller, which can be easily compensated by making the weights of the next
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fully connected layer bigger). Fortunately, in this paper, we observe that with a probabilistic
representation network pθ(z|x), we can define the “closeness” of the representations by the KL
divergence, which allows for creating adversarial examples during unsupervised/self-supervised
learning via an inner maximization of the KL term (KL[pθ(z|x)|pθ(z|xu adv)]). Visualization of the
representation distribution of an image and its adversarial example of our method can be found
in Figure 2. We also show that this leads to a robustness regularizer for unsupervised learning
that is provably transferable to downstream tasks (more details in the Approach section).
Note that this idea can also be thought of as enforcing a low Lipschitzness of the representation
network. However, as mentioned above, a typical norm-based (e.g., l1 and l2) Lipschitzness in
the representation space is not meaningful (due to the aforementioned “cheat”), whereas using
KL divergence solves the problem and also leads to a theoretical guarantee on the downstream
robustness.

In this work, we first propose an upper bound of the adversarial loss of a model for a certain
prediction task based on its loss on the clean data and a robustness regularizer. The regularizer,
which is based on the KL divergence as described above, only depends on the representation
mapping and is independent of the task. Therefore, we can minimize this regularizer term during
the representation learning phase (of an unsupervised or self-supervised method), so that the
robustness will be transferred directly to a prediction model when the representation is used for
a downstream task. Our method can be straightforwardly applied to any representation learning
method, including unsupervised learning (e.g., VAE) or any self-supervised learning model.

Our contributions in this work are threefold:

• We derive an upper bound on the adversarial loss of a prediction model on a certain task,
based on a task-independent robustness regularizer.

• We propose to incorporate the above regularizer into existing representation learning frame-
works to improve the adversarial robustness of the representation on downstream tasks.

• We demonstrate the use of our proposed regularizer with existing representation learning
frameworks, and show that the resulting models achieve SOTA results in the unsupervised
robust representation learning task.

2 Related Works
2.1 Adversarial Training

It has been shown that neural networks, even with a high classification accuracy, are vulnerable
to small bounded (but intentionally worst-case chosen) adversarial perturbations [8]. From this
observation, many methods have been proposed to alter the typical training procedure of a neural
network to improve its adversarial robustness (hence the name adversarial training). Two of the
most often-used methods are AT [5] and TRADES [6], in which the algorithms try to find a worst-
case perturbation of the input (called an adversarial example) with an inner maximization problem
and minimize the loss (or a regularizer) with respect to that adversarial example. Studying the
inner maximization problem is also an active and attractive research direction, with the aim to
develop fast and/or accurate methods to find the adversarial examples. For example, PGD [5] uses
multiple steps of projected gradient descent, which is accurate (and somewhat “gold-standard”)
but expensive. For this computational reason, many one-step algorithms have been proposed,
including FGSM [9], RS-FGSM [10] and GradAlign [11], with varying level of success. These
adversarial defense/attack methods are relevant to our work since we also need to solve an inner
maximization problem to find (unsupervised) adversarial examples for the robustness regularizer.

2.2 Self-Supervised Learning

As mentioned earlier, self-supervised learning has received great interest due to its ability to learn
from unlabeled data, which reduces the need for expensive annotations of images. Self-supervised
learning is based on a user-defined pretext task, which can be as simple as to predict the rotation
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angle of an image or more complex such as to solve a Jigsaw puzzle [12]. Recently, a popular and
successful self-supervised learning paradigm is to learn representations that are invariant under
different augmentations (also referred to as ‘distortions’) of an image [1, 4, 3]. The idea of this
learning paradigm is to maximize the similarity between representations of two augmentations
of an image, while avoiding network collapse (to a trivial and meaningless solution such as a
constant function) by different objective functions. Since our proposed robustness regularizer is
task-independent, it can be straightforwardly applied to most of these self-supervised learning
methods.

2.3 Robust Self-Supervised Learning

Recently, the field of unsupervised robust representation learning has gained increasing interest,
with the goal to leverage unlabeled data and learn a robust and meaningful representation for
downstream tasks. One of the main baselines to our work is RoCL [7], which applies adversarial
training directly on the contrastive loss in SimCLR. However, it is not clear if a representation
that is robust to the contrastive loss will be robust to the prediction loss of a downstream task.
Some other methods [13, 14] perform adversarial training on the self-supervised task to aid the
adversarial training of the main task (not to replace), which are less related to our work. Similarly,
[15] utilizes unlabeled data to help train a robust classifier in a semi-supervised manner. Meanwhile,
[16] propose an algorithm to improve the robustness of PCA. However, PCA is not a common
component of modern deep learning architectures/pipelines, thus its practicality might be limited.

3 Approach
3.1 Problem statement

Assume that we have a distribution p(x) of data (e.g., images), with x ∈ X as the input. We are
interested in the problem of robust representation learning, where we want to learn a representation
z of x with the mapping pθ(z|x), parameterized by θ; so that z is meaningful for downstream
tasks (to be defined below), and that any classifier (based on z) of the downstream tasks should
be robust against adversarial attacks. For computational reasons, we do not want to re-do the
adversarial training, and desire that the robustness transfer directly to the downstream tasks. The
representation z can be probabilistic (e.g., pθ(z|x) = N (z;µθ(x), σθ(x))) or deterministic (i.e.,
pθ(z|x) = δgθ(x)(z) with a deterministic function gθ). In this paper, we will especially consider a
probabilistic representation mapping. In practice, the representation can be learn by unsupervised
learning methods (e.g., VAE) or self-supervised learning methods (with a pretext task).

Remark 1. A note on the choice of the representation distribution pθ(z|x).
As mentioned earlier, in this paper, we especially consider a probabilistic representation

mapping. Specifically, we use a Gaussian distribution in all of our experiments, e.g., pθ(z|x) =
N (z;µθ(x), σθ(x)). This is just a design choice that is simple and works well in practice, and our
work is not limited by this choice of the distribution. We can use almost any other distribution
(with a known parameterization trick to allow for backpropagation). Also, note that the Gaussian
representation network is a generalized version of a deterministic network (it becomes a deter-
ministic network when σθ(x) → 0 ∀x); therefore, this network choice is not at all restricted when
compared to a typical deterministic network.

Any downstream task T is defined by a conditional distribution pT (y|x) where y ∈ Y is the
label. The joint data distribution of this task is pT (x, y) = p(x)pT (y|x). With the representation
mapping pθ(z|x) learned in advance, we want to learn a classifier p̂T (y|z) (parameterized by ωT ,
which we will omit for notation simplicity) for the task T . This is often called an output head that
classifies y given z.
The predictive distribution of y given x for this task T is:

Epθ(z|x)[p̂T (y|z)] (1)
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(for a deterministic representation mapping, Eq. 1 simplifies into p̂T (y|z = gθ(x)))

Remark 2. On the inference complexity of a probabilistic representation.

Using a probabilistic representation, we need to sample multiple z from pθ(z|x) to estimate
Eq. 1 with Monte Carlo sampling during test time. However, this is not a big issue for the
representation learning framework, since we only need to run the representation network pθ(z|x)
(which is usually deep) once to get a distribution of z. After sampling multiple z from that
distribution, we only need to rerun the classifier p̂T (y|z), which is usually a small network (e.g.,
often contains one or a few fully-connected layers). Furthermore, we can also run p̂T (y|z) (a small
network) in parallel for multiple z to reduce inference time if necessary.

During training of the downstream task T , a single z is sampled per input x from the learned
representation mapping pθ(z|x); and the output head p̂T (y|z) is trained via minimizing the follow-
ing training objective:

EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
(2)

With common choices of the predictive distribution p̂T (y|z), the quantity − log p̂T (y|z) is often
non-negative. For example, with a categorical predictive distribution in a classification problem,
this term is the cross-entropy loss; whereas with a Gaussian predictive distribution (with a fixed
variance) in a regression problem, the above term becomes the squared error loss (with an additive
constant).

Note also that the objective in Eq. 2 is an upper bound of the true loss for task T
EpT (x,y)

[
− logEpθ(z|x)[p̂T (y|z)]

]
(due to Jensen’s inequality), where − logEpθ(z|x)[p̂T (y|z)] is the

loss of a datapoint (x, y).
Now we formally define the adversarial robustness of the network on the downstream task.

Denote A(x) to be the set of adversarial examples of x. This set is different for different kinds of
adversarial attack; for example, with an l∞ attack, A(x) is the l∞-ball around x with a predefined
radius of ϵ. The adversarial loss of the task T is:

EpT (x,y)

[
max

xadv∈A(x)
− logEpθ(z|xadv)[p̂T (y|z)]

]
(3)

Intuitively, this means that an attacker seeks to find an adversarial example xadv of each input
x that maximizes the loss w.r.t. its label y; and we, as the defender, want to minimize that
loss. In the next subsections, we will discuss how we can minimize this adversarial loss, even in a
task-agnostic manner during the representation learning phase.

3.2 A bound on the adversarial loss

We first propose a bound on the adversarial loss based on the downstream training objective and
a robustness regularizer:

Proposition 1. Assuming that ∀x, pθ(z|x) has the same support set Z (e.g., pθ(z|x) is Gaussian);
and that − log p̂T (y|z) ≤ M ∀z ∈ Z, y ∈ Y 1, we have:

EpT (x,y)

[
max

xadv∈A(x)
− logEpθ(z|xadv)[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
+

M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(4)

Proof. provided in the supplementary file.

1In the classification problem, we can enforce this quite easily by augmenting the output softmax of the classifier
p̂T (y|z) so that each class probability is always at least exp (−M). For example, if we choose M = 3 ⇒ exp (−M) ≈
0.05, and if the output softmax is (p1, p2, ..., pC), we can augment it into (p1 ·K+0.05, p2 ·K+0.05, ..., pC ·K+0.05),
where K = 1 − 0.05 · C and C is the number of classes. This ensures the bound for the loss of a datapoint, while
retaining the output prediction class.
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The first term EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
is the downstream training loss in Eq. 2, and

will be minimized during the training of the output head p̂T (y|z) for task T .
We call the second term Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
a robustness regular-

izer. Since we do not want to perform adversarial training for the downstream tasks, we want to
minimize this term during the representation learning phase. Since this term is label-free and task-
independent, if we minimize it during the representation learning phase, it will transfer directly
to the downstream task and help minimize the bound in Eq. 4. This will be discussed further
in Subsection 3.3. Recall that we use the Gaussian distribution of the per-image representation
network, i.e., pθ(z|x) = N (z;µθ(x), σθ(x)), so this KL term can be computed analytically (and
exactly). Also note that, as discussed in Remark 1, the Gaussian representation is a generalized
version of a typical deterministic representation, so it is sufficiently expressive for typical Deep
Learning problems.

Comparison between our bound and TRADES [6]:

• The bound in TRADES only works for the case of binary classification, while our bound
works for the general case of supervised learning (including multi-class classification and
regression).

• Our robustness regularizer is label-free and task-independent. Therefore, we can minimize it
in the representation learning phase (with unsupervised or self-supervised tasks), and it will
transfer directly to the downstream tasks. On the other hand, the robustness regularizer in
TRADES is task-dependent, thus minimizing the term for a pretext task does not necessarily
transfer to the downstream task. Furthermore, TRADES’s robustness regularizer requires a
predictive distribution of a task to compute, and this might not be applicable to many self-
supervised learning methods where there is no prediction task (e.g., contrastive learning).
These arguments are also true for almost all existing robustness methods.

Trade-off between Clean Accuracy and Adversarial Robustness The trade-off between
a model’s performance on clean input and adversarial input has been well observed in practice
[6]; and this phenomenon can also be explained with our bound. Minimizing the first term in
Eq. 4 will help the model’s performance on clean input, while minimizing the second term increase
the model’s robustness against adversarial input; and there is an inherent trade-off between them.
Minimizing the second term Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
too much will compress

the representation, hurting its expressiveness and separability among classes. For example, consider
the l2 defense with radius ϵ (A(x) will be the l2-ball around x with radius ϵ). The above regularizer
encourages the representation distribution of an input x to be similar to that of its neighbours in the
l2-ball. Now, if there exist two inputs x1 and x2 from different classes such that ϵ < ||x1−x2||2 < 2ϵ,
then these two points do not belong to the other’s adversarial set. Let x′ = (x1 + x2)/2, it follows
that ||x1 − x′||2 = ||x2 − x′||2 = ||x1 − x2||2/2 < ϵ, meaning x′ ∈ A(x1) and x′ ∈ A(x2). Note that
minimizing the regularizer term too much will encourage the representation distribution of both
x1 and x2 to be similar to that of x′; and the classifier might fail to separate the two datapoints.
Therefore, it might hurt the expressiveness and separability of the representation, especially for
the inputs around the decision boundary.

3.3 Applications and Use Cases

In this subsection, we will discuss the use of our robustness regularizer
Ep(x)

[
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)]

]
. Although this term can be used directly in a su-

pervised learning setting, a far more exiting application is to minimize it during the representation
learning phase (of an unsupervised or self-supervised method). As mentioned earlier, since this
term is task-independent, if we minimize it during the representation learning phase, it will trans-
fer directly to downtream tasks, improving the model’s adversarial robustness on these tasks (see
Eq. 4). We name our regularizer Urkle (Unsupervised Robustness with KL divergencE). In this

6



subsection, we demonstrate some example scenarios to learn a meaningful (and robust) representa-
tion, namely with unsupervised learning (via VAE) and self-supervised learning (with any pretext
task).

3.3.1 With VAE

In VAE [17], we have an encoder pθ(z|x) (which also acts as our representation mapping), a decoder
qϕ(x|z), and a prior p(z), the objective of VAE (negative ELBO) is:

Ep(x)

[
Epθ(z|x)[− log qϕ(x|z)]

]
+ Ep(x) [KL[pθ(z|x)|p(z)]] (5)

Here we add our robustness regularizer to learn a robust encoder pθ(z|x), leading to the below
objective:

Ep(x)

[
Epθ(z|x)[− log qϕ(x|z)]

]
+ βV AEEp(x) [KL[pθ(z|x)|p(z)]]

+βrobustEp(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(6)

Note that we also add a coefficient βV AE for the VAE’s regularizer Ep(x) [KL[pθ(z|x)|p(z)]]
(similar to β-VAE [18]). We use a small value of βV AE in practice since we found that this term
might hinder the expressiveness of the representation pθ(z|x).

All three expectation terms in Eq 6 can be estimated with a minibatch of input x’s. For
each input x, we find the unsupervised adversary xu adv by the inner maximization problem of
maxxu adv∈A(x) KL[pθ(z|x)|pθ(z|xu adv)] with, for example, the PGD algorithm. The objective in
Eq 6 is minimized with respect to θ and ϕ (thus it will learn an encoder pθ(z|x) such that the
representation of an input is close to that of its adversaries).

3.3.2 With a self-supervised learning task

Let’s assume we have a pretext task designed to learn a meaningful representation of x. Since
self-supervised tasks and their loss functions are diverse, we will refer to the loss function as
Lssl(p(x), pθ(z|x), ϕ) in general, where pθ(z|x) is a representation mapping used to solve the task
(e.g., might be used for a pretext classification task, to solve a jigsaw puzzle, or to minimize
the contrastive loss in the contrastive learning framework) and ϕ is any additional parameters
(apart from θ) used for this self-supervised task (e.g., parameters of the projector in SimCLR [1],
parameters of the output head of some pretext classification task).

Similarly, we can also add the robustness regularizer term here to to learn a robust represen-
tation mapping pθ(z|x), leading to the following objective:

Lssl(p(x), pθ(z|x), ϕ) + βrobustEp(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(7)

Demonstration with SimCLR [1]: We re-emphasize that our proposed robustness regularizer
can be applied to almost all unsupervised and self-supervised representation learning methods.
However, since our main baseline [7] is built upon SimCLR, we also use SimCLR (with a slight
adaptation of using a probabilistic representation network) in our experiments for a fair comparison
(note that we conjecture using more recent and advanced self-supervised learning methods [4, 2]
will likely improve further the performance of our model). We demonstrate the resulting method
here in details.

First of all, SimCLR (and other contrastive learning methods) learns from two augmentations of
each image. Let denote a minibatch of data as {(x1,1, x1,2), (x2,1, x2,2), ..., (xb,1, xb,2)}, where xi,1

and xi,2 are two augmented version of a same original image xi, and are called positive examples
of each other. The goal of contrastive learning is to encourage the representation to be similar
among the positive images. For each x we sample a single z from the network pθ(z|x) to make
the minibatch of representation {(z1,1, z1,2), (z2,1, z2,2), ..., (zb,1, zb,2)}. Then the loss function of
SimCLR is:

ℓSimCLR = ℓNT Xent((z1,1, z1,2), (z2,1, z2,2), ..., (zb,1, zb,2)) (8)
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where ℓNT Xent is the so-called “normalized temperature-scaled cross entropy” loss function that
takes input as a batch of tuples t1, t2, ..., tb, with each ti is a tuple of representations from a set of
positive images (in the case above each tuple would be of length 2). Specifically:

ℓNT Xent(t1, t2, ..., tb) =

b∑
i=1

∑
z,z′∈ti,z ̸=z′

exp(sim(z, z′)/τ)∑
j ̸=i

∑
z′′∈tj

exp(sim(z, z′′)/τ)
(9)

where sim(z, z′) is the cosine similarity between z and z′ (we also often project the representation
z to a lower dimensional space before calculating the cosine similarity), and τ is the temperature
(often set to 0.5).

To implement our regularizer, we find the unsupervised adversaries
{(xu adv

1,1 , xu adv
1,2 ), ..., (xu adv

b,1 , xu adv
b,2 )} of {(x1,1, x1,2), ..., (xb,1, xb,2)} that maximize:

1

2b

b∑
i=1

2∑
k=1

max
xu adv
i,k ∈A(xi,k)

KL[pθ(z|xi,k))|pθ(z|xu adv
i,k ))] (10)

Following [7], we also use PGD [5] to solve this inner maximization problem.
Let ℓUrkle be the value of the above maximum, i.e.:

ℓUrkle =
1

2b

b∑
i=1

2∑
k=1

KL[pθ(z|xi,k))|pθ(z|xu adv
i,k ))] (11)

with {xu adv
i,k } found above.

Now we can add the regularizer ℓUrkle directly to the original loss function ℓSimCLR. However,
we note that xu adv

i,1 and xu adv
i,2 can also be treated as positive images of xi,1 and xi,2; therefore,

we also include them when compute the NT Xent loss. The final loss function of our model as:

ℓNT Xent((zi,1, zi,2, z
u adv
i,1 , zu adv

i,2 )bi=1) + βrobustℓUrkle (12)

where zu adv
i,k ∼ pθ(z|xu adv

i,k ) ∀i ∈ 1, b, k ∈ {1, 2} , ℓNT Xent is calculated as in Eq 9 (in this case
each tuple is of length 4), and βrobust is a hyperparameter.

PGD attack/defense: Since Projected Gradient Descent is used in both training and evaluation
in our experiments, we briefly review it here to make the paper more self-contained. Let’s assume
that we need to find x′ within an l∞-norm (or other norms) ball of radius ϵ around x that maximizes
the function f(x′). The PGD algorithm is as follows:

1. Initialize x0 to x (possibly with a small added random noise).

2. Update xi = xi−1 +αsign(∇xi−1f(xi−1)) with a step size α, and clip xi to the ϵ-ball that is
being considered.

3. Repeat step 2 k times, and set x′ = xk.

Note that we can also use any other adversarial attack/defense methods for the inner max-
imization problem. We use PGD in this paper because it is considered “gold-standard” at the
moment, and it is also used by our main baseline [7].

4 Experiments
We conduct extensive experiments to validate our method. In this section, we describe these
experiments in details. For more information regarding the experimental settings and the baselines,
please refer to our supplementary file.
4.1 Datasets
MNIST [19] contains 70000 images of hand-written digits with the classification task of 10
digits.
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CIFAR10 [20] consists of 60000 images of size 32x32, and over ten classes: airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck.

CIFAR100 [20] Similar to CIFAR10, CIFAR100 also consists of 60000 images with the size
32x32. The task is classification with 100 different classes.

ImageNet [21] is a large scale real-world computer vision dataset, which consists of 1000 classes.
To the best of our knowledge, this dataset has not been considered by previous adversarial self-
supervised learning methods.

4.2 Experimental Settings

Within each experiment, we use the same network as the representation network for all models.
Since our representation network is probabilistic, it only differs from the other deterministic net-
works in the last layer. In particular, for a representation of size dz, the last layer’s dimension of a
deterministic representation network is dz, while that of a probabilistic network is 2 · dz (dz for µ
and dz for σ2). Also, although our method can be used for any adversarial attack (e.g., l1 or l2),
we consider the l∞ adversaries in this experiments section. This is because l∞ is one of the most
common adversarial attacks, and it is also used in our main baseline [7].

With VAE: We test the effectiveness of our robustness regularizer when used with VAE (as
described in Section 3.3.1) with the MNIST dataset. The main baseline we consider in this exper-
iment is AE (auto-encoder) with a TRADES-like regularizer. This is because the reconstruction
in AE can be viewed as a prediction task, so we can use the regularizer in TRADES to force the
reconstruction of an image to be similar to the reconstruction of its adversaries (more details of
this baseline in the supplementary file). To make the comparison fair for AE (that has no built-in
regularizer), we set βV AE = 0 in our experiment, although we note that slightly increasing this
value leads to even better representation. Apart from this baseline, we also include supervised
learning models (Standard Training, AT [5] and TRADES [6]) for reference. For this experiment,
we consider the l∞ perturbation with ϵ = 0.1. For this “toy” experiment, we use a simple convo-
lutional neural network with four 3×3 convolutional layers (followed by an average pooling layer)
as the representation network.

With Self-Supervised Learning (SimCLR): For the more challenging real-world datasets
(CIFAR10, CIFAR100, ImageNet), learning generative features of images with VAE is difficult,
so we use self-supervised learning methods (SimCLR) to validate our robustness regularizer. In
this experiment, we consider RoCL [7] as our main baseline. We also include supervised learning
models (Standard Training, AT [5] and TRADES [6]) for reference.

We train our self-supervised model with 2000 epochs (except for ImageNet, where we train
a total number of 200 epochs for computational reasons). Similar to [7], we consider the l∞
attack and defense. Following standard in the adversarial robustness literature, we set the training
perturbation radius as ϵ = 8/255 for CIFAR10/CIFAR100 and ϵ = 2/255 for ImageNet.

For CIFAR10, we use ResNet18 [22] as the backbone network with a batchsize of 1024. As for
the CIFAR100 dataset, we use ResNet50 as the backbone, and also with a batchsize of 1024. For
ImageNet, we use a batchsize of 4096 with a ResNet50 network. For all experiments, we use a
starting learning rate of 1.2 and perform Cosine annealing on the learning rate over the course of
training.

4.3 Results

4.3.1 With VAE

Table 1 shows the results of our model and the baselines. MNIST is a relatively easy dataset,
so most methods perform reasonably well. Noticeably, our model (VAE+Urkle) outperforms
AE+TRADES by 1.4%, and approaches the performance of supervised adversarial training meth-
ods.
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Table 1: MNIST with l∞ adversaries. Training and testing ϵ are set to 0.1 in this experiment.
Our method (VAE+Urkle) outperforms the baseline AE+TRADES, while approaching the

robustness similar to supervised adversarial training methods.

Models Clean Acc Adversarial Acc

Standard Training 99.3±0.1 1.0±0.3
AT 99.0±0.1 98.5±0.2

TRADES 99.1±0.1 98.3±0.1

AE + TRADES 99.1±0.1 96.6±0.4
VAE + Urkle (ours) 99.1±0.1 98.0±0.1

Table 2: CIFAR10: Results of supervised and self-supervised methods trained with l∞
adversaries and ϵ = 8/255 (when applicable). Our method (SimCLR+Urkle) significantly
outperforms the baseline RoCL, especially with unseen (and stronger) attack ϵ = 16/255.

CIFAR10

Fully Labeled Data 5000 Labeled Data 1000 Labeled Data

Model Clean 8/255 16/255 Clean 8/255 16/255 Clean 8/255 16/255

Standard Training 92.82 0.00 0.00 79.09 0.00 0.00 60.39 0.00 0.00
AT 81.63 44.50 14.47 64.97 24.52 6.69 50.03 15.26 3.91

TRADES 77.03 48.01 22.55 63.14 25.97 7.78 48.32 15.92 3.97

SimCLR 91.25 0.63 0.15 84.31 0.84 0.12 82.15 0.55 0.11
RoCL 83.71 40.27 9.55 78.82 36.93 9.90 76.49 34.44 8.96

SimCLR+Urkle (ours) 82.31 42.56 14.29 77.47 38.76 12.94 74.82 37.56 12.22

4.3.2 With Self-Supervised Learning (SimCLR):

CIFAR10 and CIFAR100: As aforementioned, in the CIFAR10 and CIFAR100 experiments,
we train all models (except for Standard Training and SimCLR) with ϵ = 8/255. We evaluate
these models against l∞ adversarial attack with strength ϵ = 8/255 and ϵ = 16/255. Table 2 and
Table 3 show that our method (SimCLR+Urkle) clearly outperforms RoCL (with a slight trade-off
of clean accuracy in some experiments), indicating the effectiveness of our robustness regularizer.
Especially, our method is more robust against unseen attack strength (ϵ=16/255).

As discussed earlier, there is a trade-off between the clean accuracy and adversarial robustness
in our model (as well as other adversarial training methods such as TRADES), resulting in a
slightly lower (around 1%) clean accuracy of our model when compared to RoCL. However, our
model outperforms RoCL significantly in terms of adversarial robustness (especially for ϵ = 16/255,
which is an unseen attack strength). We find that this is reasonable and the improved robustness
is well worth the trade-off. Note that a similar trend can be observed for TRADES and AT, where
TRADES achieves lower clean accuracy but much better adversarial robustness when compared
to AT.

ImageNet: Preliminary result on the ImageNet dataset (Table 4) also indicates that our method
outperforms RoCL on this large scale dataset.

Experimental Results with limited numbers of labels: To take advantage of the unsuper-
vised nature of our method, we also conduct the experiments when the number of labeled images
is limited. To be re-emphasize, we train our SSL model and the unsupervised robustness regu-
larizer without any labels, and the limited number of labels are only used for the training of
the task-specific output head p̂(y|z) (without adversarial training). Table 2 and Table 3 report
the results for CIFAR10 and CIFAR100 with 5000 and 1000 labels. It can be clearly seen that
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Table 3: CIFAR100: esults of supervised and self-supervised methods trained with l∞
adversaries and ϵ = 8/255 (when applicable). Our method (SimCLR+Urkle) significantly

outperforms the baseline RoCL.

CIFAR100

Fully Labeled Data 5000 Labeled Data 1000 Labeled Data

Model Clean 8/255 16/255 Clean 8/255 16/255 Clean 8/255 16/255

Standard Training 70.34 0.00 0.00 26.59 0.00 0.00 12.14 0.00 0.00
AT 52.87 19.46 6.80 21.05 5.30 1.52 12.46 3.26 0.95

TRADES 56.96 18.54 4.48 20.35 6.41 1.63 13.78 3.19 1.32

SimCLR 58.79 0.47 0.00 53.23 0.46 0.12 44.16 0.57 0.26
RoCL 52.19 22.00 8.35 40.60 18.86 7.25 30.23 13.83 5.55

SimCLR+Urkle (ours) 53.81 24.82 10.63 42.66 22.34 11.06 32.12 14.40 6.71

Table 4: ImageNet with l∞ adversaries and ϵ = 2/255.

Models Clean Acc Adversarial Acc

RoCL 52.46 23.19
SimCLR + Urkle (ours) 51.19 25.69

supervised methods fail to learn a robust model with such a few available labels. Among the
unsupervised robust representation learning methods, our model also significantly outperforms the
baseline RoCL in these scenarios.

5 Conclusion

To conclude, in this paper, we develop a task-agnostic robust representation learning method. The
core idea behind our method is to minimize a task-independent robustness regularizer that enforces
the representation of an image to be close to that of its adversarial examples. This is motivated by
our theoretical result that, for a model using the learned representation for a downstream task, its
adversarial loss is bounded by the loss on clean image plus the above task-independent regularizer.
Our regularizer can be straightforwardly applied to almost any existing representation learning
method (with only an adaptation to a probabilistic representation). To the best of our knowledge,
our work is one of the first to study the problem of unsupervised robust representation learning in
a principled way, and show that the robustness can be theoretically transferred to the downstream
tasks. We demonstrate our proposed regularizer with several unsupervised/self-supervised methods
(from VAE to SimCLR), and conduct extensive experiments on MNIST, CIFAR10, CIFAR100
and ImageNet to validate our method. Experimental results suggest that our proposed method
(when used with SimCLR) achieves SOTA performance on the unsupervised robust representation
learning task.
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A Proofs

A.1 Proposition 1

We use a similar idea as the proof of Proposition 1 in [23], which is a bound on the target loss in
the domain adaptation problem. This is because our setting can somewhat be cast as a domain
adaptation problem, where the source domain is the clean data distribution, and the target domain
is the adversarial data distribution. The proof is as below:

Proof.
Let a(x) = argmaxxadv∈A(x) − logEpθ(z|xadv)[p̂T (y|z)] ∀x ∈ X . We need to prove that:

EpT (x,y)

[
− logEpθ(z|a(x))[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
+

M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(13)

Due to Jensen Inequality, we have:

EpT (x,y)

[
− logEpθ(z|a(x))[p̂T (y|z)]

]
≤ EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
(14)

Therefore, we only need to prove that:

EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
− EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
≤M√

2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(15)

We have:

EpT (x,y)

[
Epθ(z|a(x))[− log p̂T (y|z)]

]
− EpT (x,y)

[
Epθ(z|x)[− log p̂T (y|z)]

]
(16)

=EpT (x,y)

[∫
Z
pθ(z|a(x))[− log p̂T (y|z)]dz −

∫
Z
pθ(z|x)[− log p̂T (y|z)]dz

]
(17)

=EpT (x,y)

[∫
Z
− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(18)
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For all x, let A(x) = {z ∈ Z|pθ(z|a(x))−pθ(z|x) ≥ 0} and B(x) = {z ∈ Z|pθ(z|a(x))−pθ(z|x) <
0}, then:

EpT (x,y)

[∫
Z
− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(19)

=EpT (x,y)

[∫
A(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

+

∫
B(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(20)

≤EpT (x,y)

[∫
A(x)

− log p̂T (y|z) [pθ(z|a(x))− pθ(z|x)] dz

]
(21)

(since − log p̂T (y|z) is a non-negative quantity)

≤EpT (x,y)

[∫
A(x)

M [pθ(z|a(x))− pθ(z|x)] dz

]
(22)

=MEpT (x,y)

[∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz

]
(23)

We have: ∫
Z
[pθ(z|a(x))− pθ(z|x)] dz = 0 (24)

⇒
∫
A(x)

[pθ(z|a(x))− pθ(z|x)] dz +
∫
B(x)

[pθ(z|a(x))− pθ(z|x)] dz = 0 (25)

⇒
∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz =

∫
B(x)

|pθ(z|a(x))− pθ(z|x)| dz (26)

⇒
∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz =
1

2

∫
Z
|pθ(z|a(x))− pθ(z|x)| dz (27)

Due to the Pinsker’s Inequality we have:

1

2

∫
Z
|pθ(z|a(x))− pθ(z|x)| dz

≤1

2

√
2

∫
Z
pθ(z|x) log

pθ(z|x)
pθ(z|a(x))

dz (28)

=
1√
2

√
KL[pθ(z|x)|pθ(z|a(x))] (29)

Therefore:

MEpT (x,y)

[∫
A(x)

|pθ(z|a(x))− pθ(z|x)| dz

]
(30)

≤M√
2
EpT (x,y)

[√
KL[pθ(z|x)|pθ(z|a(x))]

]
(31)

=
M√
2
Ep(x)

[√
KL[pθ(z|x)|pθ(z|a(x))]

]
(32)

≤M√
2

√
Ep(x) [KL[pθ(z|x)|pθ(z|a(x))]] (33)

≤M√
2

√
Ep(x)

[
max

xu adv∈A(x)
KL[pθ(z|x)|pθ(z|xu adv)]

]
(34)

We conclude our proof.
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B Experimental Results

B.1 Details on the baseline AE+TRADES

Here we describe the baseline AE+TRADES, which we use in the VAE experiment, in more detail.
In particular, an autoencoder (AE) consists of an encoder gθ and a decoder hϕ. The encoder g
transforms the input x to a representation z (often lower dimensional), i.e., z = gθ(x); while the
decoder h tries to reconstruct the original input from the representation, i.e., x̂ = hϕ(z). Using
the mean squared (l2) distance for the reconstruction, the objective of AE is:

Ep(x)[||x− hϕ(gθ(x))||22] (35)

Since the reconstruction h ◦ g can be treated as a prediction task (predicting the original x),
we can use a TRADES-like regularizer to make the model more robust, and thus the encoder is
also more robust. Specially, we can enforce the reconstruction of an image to be similar to that of
its adversaries. The final objective is:

Ep(x)[||x− hϕ(gθ(x))||22]
+ βEp(x)[ max

xadv∈A(x)
||hϕ(gθ(x

adv))− hϕ(gθ(x))||22] (36)

Note that we can only use this baseline with AE (not VAE) because the TRADES regularizer
only works straightforwardly with a deterministic model / prediction.

B.2 Experimental Settings

B.2.1 With VAE

For the VAE MNIST experiment, the encoder (representation network) is a simple convolutional
network with 4 3x3 convolutional layers (with the last layer has 128 channels so that the represen-
tation has 128 dimension), followed by an average pooling layer.

With AE and VAE, the decoder consists of 4 ConvTranspose2d layers, mirroring the encoder.
The classifier (from a representation to the prediction label) is a composition of 3 fully connected

layers (with batchnorm and ReLU activation in-between).

B.2.2 With SimCLR

For a ResNet18 backbone network, we set the representation dimension to 512, while that for a
ResNet50 backbone is 2048. We set the initial learning rate to 1.2 and do Cosine annealing to 0.
Other experiment details have been presented in the main paper. In addition, please also refer to
our code for more details.

15


	Introduction
	Related Works
	Adversarial Training
	Self-Supervised Learning
	Robust Self-Supervised Learning

	Approach
	Problem statement
	A bound on the adversarial loss
	Applications and Use Cases
	With VAE
	With a self-supervised learning task


	Experiments
	Datasets
	Experimental Settings
	Results
	With VAE
	With Self-Supervised Learning (SimCLR):


	Conclusion
	Proofs
	Proposition 1

	Experimental Results
	Details on the baseline AE+TRADES
	Experimental Settings
	With VAE
	With SimCLR



